1. The product of two positive numbers is 363 . Minimize the sum of the first and three times the second. (answer: 33 and 11)
2. The management of a large store wishes to add a fenced-in rectangular storage yard of $20,000 \mathrm{sq}$. ft ., using the building as one side of the yard. Find the minimum amount of fencing that must be used to enclose the remaining 3 sides of the yard. (answer: 400°)
3. A farmer has 80 feet of fencing to enclose three sides of a rectangular plot of land (the fourth side has an existing stone partition). What dimensions for the rectangular plot will enclose the maximum area? (answer: $20^{\circ} \times 40^{\circ}$)
4. An open box is to be made from a rectangular piece of material by cutting equal squares from each corner and turning up the sides. Find the dimensions of the box of maximum volume if the material has dimensions 6 inches by 6 inches. (answer: $4^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime}$)

5. An open box is to be made from a 16 " by 30 " piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. What size should the squares be to obtain a box with largest possible volume? (Answer: 10/3")
6. An offshore oil well is located in the ocean at point W , which is 5 miles from the closest shorepoint A an a straight shoreline. The oil is to be piped to a shorepoint B that is 8 miles from A by piping it on a straight line under water from W to some shorepoint P between A and B and then on to B via a pipe along the shoreline. If the cost of laying the pipe is $\$ 100,000$ per mile under water and $\$ 75,000$ per mile over land, where should the point P be located to minimize the cost of laying the pipe?
 (Answer: approx 5.67 miles from A)
7. The sum of the first number and twice the second number is 108 and the product is a maximum. Find two positive numbers that satisfy this requirement. (Answer: 27 and 54)
8. Find the point on the graph of the function that is closest to the given point:

$$
\left.f(x)=x^{2}, \quad\left(2, \frac{1}{2}\right) \quad \text { (Answer: }(1,1)\right)
$$

9. A rancher has 400^{\prime} of fencing with which to enclose two adjacent rectangular corrals. What dimensions should be used so that the enclosed area will be a maximum? (Answer: $50^{\prime} \times 200 / 3^{\prime}$)

10. A Norman window is constructed by adjoining a semicircle on the top of an ordinary rectangular window. Find the dimensions of the Norman window of maximum are if the total perimeter is 16 feet. (Answer: $\frac{32}{4+\pi} \times \frac{16}{4+\pi}$ ')

