Find the volume of the solid generated by revolving the region about the given axis. Use the shell or washer method.

1) The region in the first quadrant bounded by $x=6 y-y^{2}$ and the y-axis about the line $x=-1$
2) The region bounded by $y=5 \sqrt{x}, y=5$, and $x=0$ about the line $y=5$

Find the volume of the solid generated by revolving the region about the given line.
3) The region in the second quadrant bounded above by the curve $y=4-x^{2}$, below by the x-axis, and on the right by the y-axis, about the line $x=1$
4) The region bounded above by the line $y=8$, below by the curve $y=8 \cos (\pi x)$, on the left by the line $x=-0.5$, and on the right by the line $x=0.5$, about the line $y=8$

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves about the given lines.

$$
\text { 5) } y=25-x^{2}, \quad y=25, \quad x=5 ; \text { revolve about the line } y=25
$$

Find the length of the curve.
6) $y=4 x^{3 / 2}$ from $x=0$ to $x=\frac{5}{16}$
7) $\mathrm{x}=3 \sin \mathrm{t}-3 \mathrm{t} \cos \mathrm{t}, \mathrm{y}=3 \cos \mathrm{t}+3 \mathrm{t} \sin \mathrm{t}, 0 \leq \mathrm{t} \leq \frac{\pi}{4}$

Find the area of the surface generated by revolving the curve about the indicated axis.
8) $x=3 \sqrt{4-y}, 0 \leq y \leq 15 / 4 ; y$-axis

Find the area of the surface generated when the given curve is revolved about the x-axis.
9) $y=\frac{x^{3}}{3}+\frac{1}{4 x}$ on $\left[\frac{1}{2}, 1\right]$

Solve the differential equation with the initial condition.
10) $2 \frac{d y}{d x}-4 x y=8 x ; y(0)=23$

Determine if the given function y is a solution of the differential equation that follows it. Assume that C is an arbitrary constant.
11) $y=C_{1} \sin 5 t+C_{2} \cos 5 t ; y^{\prime \prime}(t)+25 y=0$

Solve the problem.

12) Use Newton's Law of Cooling to find the temperature in the following case. A glass of water with a temperature of $3^{\circ} \mathrm{C}$ is placed in a room with a temperature of $30^{\circ} \mathrm{C}$. One minute later the water has warmed to $8^{\circ} \mathrm{C}$. After how many minutes does the water have a temperature that is 90% of the ambient temperature?

Find the general solution of the equation. Express the solution explicitly as a function of the independent variable.
13) $e^{3 t} y^{\prime}(t)=-7$

Answer Key

Testname: REVTEST2CALC2SPRIN2017

1) $\frac{1656}{5} \pi$
2) $\frac{25}{6} \pi$
3) $\frac{56}{3} \pi$
4) $96 \pi-256$
5) 625π
6) $\frac{335}{432}$
7) $\frac{3}{32} \pi^{2}$
8) $\left(\frac{125}{2}-5 \sqrt{10}\right) \pi$
9) $\frac{35 \pi}{64}$
10) $y=-2+25 e^{x^{2}}$
11) Yes
12) $\approx 11 \mathrm{~min}$
13) $y=\frac{7}{3} e^{-3 t}+C$
