Foundations of Discrete Mathematics

Chapter 0

By Dr. Dalia M. Gil, Ph.D.

Statement

\square Statement is an ordinary English statement of fact.
\square It has a subject, a verb, and a predicate.
\square It can be assigned a "true value," which can be classified as being either true or false.

Examples of Statement

\square "There are 168 primes less than \leftarrow True 1000."
\square "Seventeen is an even number." \leftarrow False
\square " $\sqrt{ } 3^{\sqrt{3}}$ is a rational number." \leftarrow False
\square "Zero is not negative."

Compound Statements

\square A compound statement is a statement formed from two other statements.
\square These both statements can be linked with "and" or "or."

A Compound Statement with "and"

$$
" 9=32 \text { and } 3.14<\pi "
$$

\square This compound statement is formed from two simple statements:

- "9 = 32" and

■ "3.14< π "

Rule for a Compound Statement with "and"

\square Given the statements p and q .
\square The compound statement "p and q" is true if both p and q are true.
\square " p and q " is false if either p is false or q is false.

Examples of Compound Statements with "and"

$$
\square^{\prime \prime}-2^{2}=-4 \text { and } 5<100^{\prime \prime} \quad \leftarrow \text { True }
$$

$$
\square^{\prime \prime}-2^{2}+32=42 \text { and } 3.14<\pi^{\prime \prime}
$$

A Compound Statement with "or"

"The man is wanted dead or alive"

\square This compound statement is formed from two simple statements:

■ "The man is wanted dead" ■ "alive"

A Compound Statement with "or"
\square There are

- Inclusive OR
- Exclusive OR
\square In this course, we will use Inclusive OR, which includes the possibility of both p and q statements.

Rule for a Compound Statement with "or"

\square Given the statements p and q .
\square The compound statement "p or q" is true if p is true or q is true or both are true.
\square "p or q" is false only when p and q are false.

Examples of Compound Statements with "or"

$\square " 7+5=12$ or 571 is \leqslant True the $125^{\text {th }}$ prime."
$\square " 5$ is an even number or $\sqrt{ } 8>3 . "$ \uparrow False

Implication

\square Statement of the form "p implies q"
\square Where p and q are statements.

- p is called hypothesis.
- q is called conclusion.
\square The symbol \rightarrow is read implies.

Examples of Implication

$\square " 2$ is an even integer $\rightarrow 4$ is an

 even integer"\uparrow

Hypothesis

Implication

\square Implications often appears without the word implies.

" 2 is an even integer, then 4 is an even integer."

Implication

-The implication " $p \rightarrow q$ " is false only when

- the hypothesis \mathbf{p} is true and
\square the conclusion \underline{q} is false.
\square In all other situations, it is true.

Implication

\square "If -1 is a positive number, then $2+2=5$." \uparrow True

Why?
"If -1 is a positive number" \leftarrow False
$" 2+2=5 " \quad \leftarrow$ False

Implication

""If -1 is a positive number, then $2+2=4$."
 \uparrow True

Why?
"If -1 is a positive number" \leftarrow False
$" 2+2=5 " \quad<$ True

The Converse of an Implication

\square The converse of the implication $\mathrm{p} \rightarrow \mathrm{q}$ is the implication $\mathrm{q} \rightarrow \mathrm{p}$.

Given the implication
" 2 is an even integer, then 4 is an even integer."

The Converse of an Implication

\square The converse of the implication $\mathrm{p} \rightarrow \mathrm{q}$ is the implication $\mathrm{q} \rightarrow \mathrm{p}$.

The converse is
" 2 is an even integer, then 4 is an even integer."

The Converse of an Implication

Given the implication

$$
\text { "If } 4^{2}=16, \text { then }-1^{2}=1^{\prime}
$$

The converse is

$$
\text { "If }-1^{2}=1, \text { then } 4^{2}=16 "
$$

Double Implication

\square The double implication $p \leftrightarrow q$ is read "p if and only if q."

$$
\text { " } \mathrm{p} \rightarrow \mathrm{q} \text { " and " } \mathrm{p} \leftarrow \mathrm{q} \text { " or }
$$

$$
" p \rightarrow q \text { " and "q } \rightarrow \text { p" }
$$

Double Implication

\square The double implication " $p \leftrightarrow q$ " is true if p and q have the same truth values;
$\square " p \leftrightarrow q$ " is false if p and q have different truth values.

Examples of Double Implication

$\square " 2$ is an even number $\leftrightarrow 4$ is an even number"

\uparrow True

" 2 is an even number" \leftarrow True
"4 is an even number" \leftarrow True

Examples of Double Implication

$\square " 2$ is an even number $\leftrightarrow 5$ is an even number"
\uparrow False
" 2 is an even number" \leftarrow True
" 5 is an even number" \leftarrow False

Is this Double Implication True or False?

$$
\text { 1. " } 4^{2}=16 \leftrightarrow-1^{2}=-1 "
$$

\uparrow True

$$
\begin{aligned}
& " 4^{2}=16 " \quad \leftarrow \text { True } \\
& "-1^{2}=-1 " \quad \leftarrow \text { True }
\end{aligned}
$$

\square Both statements are true.

Is this Double Implication True or False?

2. " $4^{2}=16$ if an only if $(-1)^{2}=-1$ " \uparrow False

$$
\begin{aligned}
& " 42=16 " \quad \leftarrow \text { True } \\
& "-1^{2}=-1 " \quad \leftarrow \text { False }
\end{aligned}
$$

\square The two statements have different truth values.

Is this Double Implication True or False?

$$
\begin{gathered}
\text { 3. " } 4^{2}=15 \text { if an only if }-1^{2}=-1^{\prime \prime} \\
\uparrow \text { False }
\end{gathered}
$$

$$
\begin{aligned}
& " 4^{2}=15^{\prime \prime} \quad \leftarrow \text { False } \\
& "-1^{2}=-1^{\prime \prime} \leftarrow \text { True }
\end{aligned}
$$

\square The two statements have different truth values.

Is this Double Implication True or False?

$$
\text { 4. " } 4^{2}=15 \leftrightarrow(-1)^{2}=-1^{\prime \prime}
$$

$$
\uparrow \text { True }
$$

$$
\begin{array}{ll}
" 42=16^{\prime \prime} & \leftarrow \text { False } \\
"(-1)^{2}=-1 " & \leftarrow \text { False }
\end{array}
$$

\square Both statements are false.

Negation

\square The negation of the statement p is the statement that asserts that p is not true.
\square The negation of p is denoted by $\neg p$ ("not p ").

Example of Negation

\square The statement "x equals to 4" ("x = 4")
\square The negation is " x does not equal to 4" ("x = 4")
$\square \neq$ means "not equal."

Negation

$\square "$ not p " can be expressed as "It is not the case that p."

口"25 is a perfect square."

口"25 is not a perfect square."

Negation

$\square "$ not p " can be expressed as "It is not the case that p."

口"25 is a perfect square."
\square "It is not the case that 25 is a perfect square."

Negation

\square The negation of an "or" statement is always an "and" statement.
\square The negation of an "and" statement is always an "or."

Negation

-The negation of "p and q " is the assertion " \neg p or $\neg q$."

\square The negation of " $a^{2}+b^{2}=c^{2}$ and $a>0$ " is "Either $a^{2}+b^{2} \neq c^{2}$ or $a \leq 0 . "$

Negation

-The negation of "p or q" is the assertion " $\neg p$ and $\neg q$."

\square The negation of " $x+y=6$ or $2 x+3 y<7$ " is " $x+y \neq 6$ and $2 x+3 y \geq 7$."

Negation

\square What is the negation of $p \rightarrow q$?
\square "Not $p \rightarrow q$ " means $p \rightarrow q$ is false because p is true and q is false.

$$
\square \neg(p \rightarrow q) \text { is "p and } \neg q \text { " }
$$

The Contrapositive

\square The contrapositive of the implication " $p \rightarrow q$ " is the implication " $(\neg \mathrm{q}) \rightarrow(\neg \mathrm{p})$."

Examples of the Contrapositive

\square "If x is an even number, then $x^{2}+3 x$ is an even number"

The contrapositive is
\square "If $x^{2}+3 x$ is an odd number, then x is an odd number."

Examples of the Contrapositive

$\square "$ If $4^{2}=16$, then $-1^{2}=1^{\prime \prime}$

The contrapositive is
\square "If $-1^{2} \neq 1$, then $4^{2} \neq 16$."
\uparrow is false because the hypothesis is true and the conclusion is false.

Examples of the Contrapositive

$\square "$ If $-1^{2}=1$, then $4^{2}=16$ "
The contrapositive is
\square "If $4^{2} \neq 16$, then $-1^{2} \neq 1$."
\uparrow is true because the hypothesis is false and the conclusion is true.

Quantifiers

\square The expressions there exits and for all are quantifiers.

\square "for any" and "all" are synonymous with "for all."

Quantifiers

\square The universal quantifier for all says that
\square a statement is true for all integers or for all polynomials or for all elements of a certain type.

Quantifiers

\square The existential quantifier there exists stipulates the existence of a single element for which a statement is true.

Examples of Quantifiers

$\square x^{2}+x+1>0$ for all real numbers x.
\square All polynomials are continuous functions.
\square For all real numbers $x>0, x$ has a real square root.

Examples of Quantifiers

\square For any positive integer $n, 2(1+2+$ $3+\ldots+n)=n x(n+1)$.
$\square(A B) C=A(B C)$ for all square matrices, A, B, and C.

Examples of Quantifiers

\square Some polynomial have no real zeros.
\square "There exists a set A and a set B such that A and B have no element in common."

Examples of Quantifiers

\square There exists a smallest positive integer.
\square Two sets may have no element in common.

Quantifiers

\square Rewrite "Some polynomials have no real zeros" making use of the existential quantifier.
\square There exists a polynomial with no real zeros.

Quantifiers

\square There exists a matrix 0 with the property that $A+0=0+A$ for all matrices A.
\square For any real number x , there exists an integer such that $\mathrm{n} \leq \mathrm{x}<\mathrm{n}+1$

Quantifiers

\square Every positive integer is the product of primes.
\square Every nonempty set of positive integers has a smallest element.

To Negate Quantifiers

\square To negate a statement that involves one or more quantifiers in a useful way can be difficult.
\square In this situation begin with "It is not the case" and then to reflect on what you have written.

To Negate Quantifiers

\square "For every real number x, x has a real square root."
\square "It is not the case that every real number x has a real square root."

or

\square "There exists a real number that does not have a real square root."

To Negate Quantifiers

\square The negation of "For all something, p " is the statement "There exists something such that $\neg p$."
\square The negation of "There exists something such that p " is the statement "For all something, $\neg p$. ."

To Negate Quantifiers

ㅁThe negation of
"There exists a and b for which $a b \neq b a "$,
is the statement
"For all a and $b, a b=b a . "$

The Symbols \forall and \exists

\square The symbols \forall and \exists are commonly used for the quantifiers for all and there exists, respectively.

$$
\forall x, \exists n \text { such that } n>x
$$

or
$\forall x, \exists \mathrm{n}, \mathrm{n}>\mathrm{x}$

Some Assumptions

\square The product of nonzero real numbers is nonzero.
\square The square of a nonzero real number is a positive real number.
\square A prime is a positive integer $p>1$ that is divisible evenly only by ± 1 and $\pm p$.

Some Assumptions

\square An even integer is one that is of the form $2 k$ for some integer \boldsymbol{k}.
\square An odd integer is one that is of the form $2 k+1$ for some integer k.
\square The product of two even integers is even.

Some Assumptions

\square The product of two odd integers is odd.
\square The product of an odd integer and an even integer is even.
\square A real number is rational if it is a common fraction, that is, the quotient m / n of the integers m and n with $n \neq 0$.

Some Assumptions

$\square A$ real number is irrational if it is not rational. For example π and ${ }^{3} \sqrt{5}$
\square An irrational number has a decimal expansion that neither repeats nor terminates.

Proofs in Mathematics

\square Many mathematical theorems are statements that a certain implication is true.
\square The hypothesis and conclusion of an implication could be any two statements, even statements completely unrelated to each other.

Proofs in Mathematics

\square Suppose

$$
" 0<x<1 \rightarrow x^{2}<1 "
$$

\square To prove this statement a general argument must be given that works for all x between 0 and 1 .

Proofs in Mathematics

\square Assume that the hypothesis is true.

$$
0<x<1 \quad<\text { Hypothesis is true }
$$

$\square x$ is a real number with $0<x<1$
$\square x>0$ and $x<1$

Proofs in Mathematics

\square Multiplying $x<1$ by a positive such as \times preserves the inequality.

$$
\begin{gathered}
x . x<x .1 \\
x^{2}<x
\end{gathered}
$$

Since $x<1, x^{2}<1$
\uparrow This argument works for all x between 0 and 1

Proofs in Mathematics

\square Suppose

$$
" x^{2}<1 \rightarrow 0<x<1 " \quad \text { False }
$$

\square When $\mathrm{x}=-1 / 2$
$(-1 / 2)^{2}<1 \leftarrow$ Left side is true
$0<-1 / 2<1$
\leftarrow Right side is False

Proofs in Mathematics

\square To show that a theorem, or a step in a proof, is false, it is enough to find a single case where the implication does not hold.
\square To show that a theorem is true, we must give a proof that covers all possible cases.

Proofs in Mathematics

\square Is the contrapositive of the following statement true?

$$
\text { " } x^{2} \geq 1 \rightarrow(x \leq 0 \text { or } x \geq 1) \text { " }
$$

Proofs in Mathematics

" $x^{2}+y^{2}=0 \leftrightarrow(x=0$ and $y=0) "$
\square This statement is of type $A \leftrightarrow B$
\square It can be expressed as " A is a necessary and sufficient condition for B"

Proofs in Mathematics

\square The statement is of type (A and B) $\leftrightarrow C$
\square It can be expressed as " A and B are necessary and sufficient conditions for C."

Proofs in Mathematics

\square "A triangle has three equals angles" is a necessary and sufficient condition for "a triangle has three equal sides."
\square To prove that " $A \leftrightarrow B$ " is true, we must prove separately that " $A \rightarrow B$ " and " $B \rightarrow A$ " are both true.

Proofs in Mathematics

\square Prove that

$$
" x^{2}+y^{2}=0 \leftrightarrow(x=0 \text { and } y=0) "
$$

\square Assume $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=0$
\square Since the square of a real number cannot be negative and the square of a nonzero real number is positive .

Proofs in Mathematics

\square If either " $x^{2} \neq 0$ or $y^{2} \neq 0$,
the sum $x^{2}+y^{2}$ would be positive, which is not true.
\square This means $x^{2}=0$ and $y^{2}=0$, so $x=0$ and $y=0$, as desired.

Proofs in Mathematics

\square A theorem in mathematics asserts that three or more statements are equivalent, meaning that all possible implications between pairs of statements are true.

Proofs in Mathematics

\square "The following are equivalent: 1. A
2. B
3. $C^{\prime \prime}$
\square This means that each of the double implications $A \leftrightarrow B, B \leftrightarrow C, A \leftrightarrow C$ is true.

Proofs in Mathematics

$$
A \leftrightarrow B, B \leftrightarrow C, A \leftrightarrow C \text { is true. }
$$

\square Instead of proving the truth of the six implications, it is more efficient just to establish the truth of the sequence

$$
A \rightarrow B \rightarrow C
$$

Example: Proofs in Mathematics

\square Let x be a real number. Show that the following are equivalent.

1. $x= \pm 1$.
2. $x^{2}=1$.
3. If a is any real number, then $\mathrm{ax}= \pm \mathrm{a}$

Example: Proofs in Mathematics

\square It is sufficient to establish the truth of the sequence

$$
(2) \rightarrow(1) \rightarrow(3) \rightarrow(2)
$$

$\left(x^{2}=1\right) \rightarrow(x= \pm 1)$
$(x= \pm 1) \rightarrow$ (If a is any real number, then $a x= \pm a$)
(If a is any real number, then $a x= \pm a) \rightarrow\left(x^{2}=1\right)$

Example: Proofs in Mathematics

\square (2) \rightarrow (1) \leftarrow Assume (2) and prove (1)
Since

$$
x^{2}=1,0=x^{2}-1=(x+1)(x-1)
$$

- Since the product of real numbers is zero if and only if one of the numbers is zero.

Example: Proofs in Mathematics

$\square(2) \rightarrow(1) \leftarrow$ Assume (2) and prove (1)

Either

$$
x+1=0 \text { or } x-1=0
$$

- Hence $x=-1$ or $x=+1$, as required.

Example: Proofs in Mathematics

\square (1) \rightarrow (3) \leftarrow Assume (1) and prove (3)
Either $x=+1$ or $x=-1$
\square Let a be a real number. If $x=+1$, then $a x=a .1=a$.
\square If $x=-1$, then $a x=-a$
\square In every case, $a x= \pm a$ as required.

Example: Proofs in Mathematics

$\square(3) \rightarrow(2) \quad \leftarrow$ Assume (3) and prove (2)
Given that $a x= \pm a$ for any real number a.
\square With $a=1$, we obtain $x= \pm 1$ and squaring gives $x^{2}=1$, as desired.

Direct Proofs

\square Most theorems in mathematics are stated as implications: $A \rightarrow B$.
\square Sometimes, it is possible to prove such a statement directly.
\square By establishing the validity of a sequence of implications.

Prove that for all real numbers $x, x^{2}-4 x+17 \neq 0$

The left side of the inequality can be represented as
$\square x^{2}-4 x+17=x^{2}-4 x+4+13$

$$
=(x-2)^{2}+13
$$

Prove that for all real numbers $x, x^{2}-4 x+17 \neq 0$

$\square(x-2)^{2}+13$ is the sum of 13 and a number.
$\square(x-2)^{2}$ is never negative
\square So, $x^{2}-4 x+17 \geq 13$ for any x;
\square In particular $x^{2}-4 x+17 \neq 0$

Suppose that x and y are real numbers such that $2 x+y=1$ and $x-y=-4$

Prove that $x=-1$ and $y=3$
$\square(2 x+y=1$ and $x-y=-4) \rightarrow$
$(2 x+y)+(x-y)=1-4$
$\square 2 x+y+x-y=1-4$

$$
\rightarrow 3 x=-3 \rightarrow x=-1
$$

Suppose that x and y are real numbers

 such that $2 x+y=1$ and $x-y=-4$Also,
$\square(x=-1$ and $x-y=-4) \rightarrow$
$\square(-1-y=-4) \rightarrow-y=-1+4=-3$. $\rightarrow y=-3$.

Proof by Cases

\square A direct argument is made simpler by breaking it into a number of cases, one of which must hold and each of which leads to the desired conclusion.

Example: Proof by Cases

Let n be an integer. Prove that $9 n^{2}+3 n-2$ is even.
Case 1. n is even

1. An integer is even if and only if twice another integer.
2. $n=2 k$ for some integer k.
3. Thus $9 n^{2}+3 n-2=36 k^{2}+6 k-2$

$$
=2\left(18 k^{2}+3 k-1\right)
$$

\uparrow Even

Example: Proof by Cases

Case 2. n is odd.

1. An integer is odd if and only if it has the form $2 k+1$ for some integer k.
2. $n=2 k+1$ for some integer k.
3. Thus $9 n^{2}+3 n-2$
$=9\left(4 k^{2}+4 k+1\right)+3(2 k+1)-2$
$=36 k^{2}+42 k+10$
$=2\left(18 k^{2}+21 k+5\right) \quad \leftarrow$ Even

Prove the Contrapositive

\square " $A \rightarrow B$ " is true if an only if its contrapositive " $\neg A \rightarrow \neg B$ " is true.
\square " $A \rightarrow B$ " is false if and only if A is true and B is false.
\square That is, if and only if " $\neg B \rightarrow \neg A$ " is false.

Prove the Contrapositive

\square Two statements " $A \rightarrow B$ " and " $\neg B \rightarrow \neg A$ " are false together (or true together).
\square They have the same true values. The result is proved.

Prove the Contrapositive

\square If the average of four different integers is 10 , prove that one of the integers is greater than 11.

Let A and B the statements
A: " The average of four integers, all different, is $10 .{ }^{\prime \prime}$
B: "One of the four integers is greater than 11."

Prove the Contrapositive

\square We will prove the truth of " $\mathrm{A} \rightarrow \mathrm{B}$ " proving the truth of the contrapositive " $\neg B \rightarrow \neg A$."

Using the theorem
" $A \rightarrow B$ " is true if an only if its contrapositive " $\neg B \rightarrow \neg A$ " is true.

Prove the Contrapositive

\square Call the given integers a, b, c, d
\square If B is false, then each of these numbers is at most 11.

Prove the Contrapositive

\square Since they are all different,

the biggest value for $a+b+c+d$ is $11+10+9+8=38$.

So the biggest possible average would be $38 / 4$, which is less than 10 , so A is false.

Prove by Contradiction

\square Assuming that the negation of the statement A is true.
\square If this assumption leads to a statement that is obviously false (an absurdity) or to a statement that contradicts something else, then $\neg A$ is false.
\square So, A must be true.

Show that there is no largest integer

\square Let A be the statement "There is no largest number."
\square If A is false, then there is a largest integer N .
\square This is absurd, however, because $N+1$ is an integer larger than N. Thus $\neg A$ is false. So, A is true.

Example

\square Suppose that a is nonzero rational number and that b is an irrational number. Prove that $a b$ is irrational.
\square By contradiction assume
A: $a b$ is irrational is false, then $a b$ is rational, so $a b=m / n$ for integers m and $n, n \neq 0$.

Example

\square Now a is given to be rational, so $a=k / l$ for integers k and $I, I \neq 0$, and $k \neq 0$ (because a $\neq 0$).

$$
\begin{aligned}
& b=m / n a=m l / n k \quad(a b=m / n) \\
& \text { with } n k \neq 0 \text {, so } b \text { is rational } \\
& \uparrow \text { This is not true }
\end{aligned}
$$

By Contradiction, we have proven that \mathbf{A} is true

Prove that $\sqrt{ } 2$ is an irrational number

\square If the statement is false, then there exist integers m and n such that $\sqrt{ } 2=m / n$.
\square If both m and n are even, we can cancel 2's in numerator and denominator until at least one of them is odd.

Prove that $\sqrt{ } 2$ is an irrational number

\square Without loss of generality, we may assume that not both m and n are even.

- Squaring both sides of $\sqrt{ } 2=m / n$
- $2=m^{2} / n^{2}$
- $\mathrm{m}^{2}=2 \mathrm{n}^{2}$, so m^{2} is even.

Prove that $\sqrt{ } 2$ is an irrational number

\square The square of an odd integer is odd,

- $\mathrm{m}=2 \mathrm{k}$ must be even
- $\mathrm{m}^{2}=2 \mathrm{n}^{2}$
- $4 k^{2}=2 n^{2}$
- $2 \mathrm{k}^{2}=\mathrm{n}^{2}$.
\uparrow It implies that n is even, contradicting the fact that not both \mathbf{m} and \mathbf{n} are even.

Topics covered in this Meeting

\square Compound statements

- And and Or
- Implication and its converse
- The Contrapositive
- Quantifiers
- Negation

Topics covered in this Meeting

\square Proofs in Mathematics

- Direct Proof
- Proof by cases
- Proof the contrapositive
- Proof by contradiction

Reference

\square "Discrete Mathematics with Graph Theory", Third Edition, E. Goodaire and Michael Parmenter, Pearson Prentice Hall, 2006. pp 1-18.

