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Statement

Statement is an ordinary English 
statement of fact.

It has a subject, a verb, and a 
predicate.

It can be assigned a “true value,”
which can be  classified as being 
either true or false.



Examples of Statement

“There are 168 primes less than 
1000.”

True

“Seventeen is an even number.” False

“√3√3 is a rational number.” False

“Zero is not negative.” True



Compound Statements

A compound statement is a statement 
formed from two other statements.

These both statements can be linked 
with “and” or “or.”



A Compound Statement with “and”

“9 = 32 and 3.14 < π”

This compound statement is formed 
from two simple statements:

“9 = 32” and
“3.14 < π”



Rule for a Compound Statement 
with “and”

Given the statements p and q.

The compound statement “p and q”
is true if both p and q are true.

“p and q” is false if either p is false 
or q is false.



Examples of Compound Statements 
with “and”

“-22 = -4 and 5 < 100” True

“-22 + 32 = 42 and 3.14 < π”

False



A Compound Statement with “or”

“The man is wanted dead or
alive”

This compound statement is formed 
from two simple statements:

“The man is wanted dead”
“alive”



A Compound Statement with “or”

There are

Inclusive OR
Exclusive OR

In this course, we will use Inclusive 
OR, which includes the possibility of 
both p and q statements.



Rule for a Compound Statement 
with “or”

Given the statements p and q.

The compound statement “p or q”
is true if p is true or q is true or 
both are true.

“p or q” is false only when p and q 
are false.



Examples of Compound Statements 
with “or”

“7 + 5 = 12 or 571 is 
the 125th prime.”

True

“5 is an even number or √8 > 3.”

False



Implication

Statement of the form “p implies q”

Where p and q are statements.
p is called hypothesis.
q is called conclusion.

The symbol  → is read implies.



Examples of Implication

“2 is an even integer → 4 is an
even integer”

Hypothesis
Conclusion



Implication

Implications often appears 
without the word implies.

“2 is an even integer, then 4 is an 
even integer.”



Implication

The implication “p → q” is false 
only when 

the hypothesis p is true and 
the conclusion q is false. 

In all other situations, it is true.



Implication

“If -1 is a positive number, then 
2+2=5.”

True

Why?

“If -1 is a positive number” False

False“2+2=5”



Implication

“If -1 is a positive number, then 
2+2=4.”

True

“If -1 is a positive number”

Why?

False

True“2+2=5”



The Converse of an Implication

The converse of the implication 
p → q is the implication q → p.

Given the implication

“2 is an even integer, then 4 is an 
even integer.”



The Converse of an Implication

The converse of the implication 
p → q is the implication q → p.

The converse is

“2 is an even integer, then 4 is an 
even integer.”



The Converse of an Implication

Given the implication

“If 42 = 16, then -12 = 1”

The converse is

“If -12 = 1, then 42 = 16”



Double Implication

The double implication p ↔ q is 
read “p if and only if q.”

“p → q” and “p ← q” or

“p → q” and “q → p”



Double Implication

The double implication “p ↔ q” is 
true if p and q have the same 
truth values; 

“p ↔ q” is false if p and q have 
different truth values.



Examples of Double Implication

“2 is an even number ↔ 4 is an 
even number”

True

“2 is an even number” ← True

← True“4 is an even number”



Examples of Double Implication

“2 is an even number ↔ 5 is an 
even number”

False

“2 is an even number” ← True

← False“5 is an even number”



Is this Double Implication True or False?

1. “42 = 16 ↔ -12 = -1”

↑ True

“42 = 16” ← True

← True“-12 = -1”

Both statements are true.



Is this Double Implication True or False?

2. “42 = 16 if an only if  (-1)2 = -1”

↑ False

“42 = 16” ← True

← False“-12 = -1”

The two statements have different 
truth values.



Is this Double Implication True or False?

3. “42 = 15 if an only if -12 = -1”

↑ False

“42 = 15” ← False

← True“-12 = -1”

The two statements have different 
truth values.



Is this Double Implication True or False?

4. “42 = 15 ↔ (-1)2 = -1”

↑ True

← False“42 = 16”

“(-1)2 = -1” ← False

Both statements are false.



Negation

The negation of the statement p 
is the statement that asserts 
that p is not true.

The negation of p is denoted by 
¬p (“not p”).



Example of Negation

The statement “x equals to 4”
(“x = 4”)

The negation is “x does not 
equal to 4” (“x ≠ 4”)

≠ means “not equal.”



Negation

“not p” can be expressed as 

“It is not the case that p.”

“25 is a perfect square.”

“25 is not a perfect square.”



Negation

“not p” can be expressed as 

“It is not the case that p.”

“25 is a perfect square.”

“It is not the case that 25 is a 
perfect square.”



Negation

The negation of an “or”
statement is always an “and”
statement.

The negation of an “and”
statement is always an “or.”



Negation

The negation of “p and q” is the 
assertion “¬p or ¬q.”

The negation of 
“a2 + b2 = c2 and a > 0” is 

“Either a2 + b2 ≠ c2 or a  ≤ 0.”



Negation

The negation of “p or q” is the 
assertion “¬p and ¬q.”

The negation of 
“x + y = 6 or 2x + 3y < 7” is 

“x + y ≠ 6 and 2x + 3y ≥ 7.”



Negation

What is the negation of p → q?

“Not p → q” means p → q is 
false because p is true and q is 
false.

¬(p → q) is “p and ¬q”



The Contrapositive

The contrapositive of the 
implication “p → q” is the 
implication “(¬q) → (¬p).”



Examples of the Contrapositive

“If x is an even number,  then   
x2 + 3x is an even number”

The contrapositive is 

“If x2 + 3x is an odd number, 
then  x is an odd number. ”



Examples of the Contrapositive

“If 42 = 16,  then -12 = 1”

The contrapositive is 

“If -12 ≠ 1, then 42 ≠ 16. ”

↑ is false because the hypothesis is 
true and the conclusion is false.



Examples of the Contrapositive

“If -12 = 1,  then 42 = 16”

The contrapositive is 

“If 42 ≠ 16, then -12 ≠ 1.”

↑ is true because the hypothesis is 
false and the conclusion is true.



Quantifiers

The expressions there exits
and for all are quantifiers.

“for any” and “all” are 
synonymous with “for all.”



Quantifiers

The universal quantifier for all
says that

a statement is true for all integers 
or for all polynomials or for all
elements of a certain type.



Quantifiers

The existential quantifier there 
exists stipulates the existence 
of a single element for which 
a statement is true.



Examples of Quantifiers

x2 + x + 1 > 0 for all real numbers x.

All polynomials are continuous 
functions.

For all real numbers x > 0, x has a 
real square root.



Examples of Quantifiers

For any positive integer n, 2(1 + 2 + 
3 + … + n) = n x (n + 1).

(AB)C = A(BC) for all square matrices,  
A, B, and C.



Examples of Quantifiers

Some polynomial have no real zeros.

“There exists a set A and a set B such 
that A and B have no element in 
common.”



Examples of Quantifiers

There exists a smallest positive 
integer.

Two sets may have no element in 
common.



Quantifiers

Rewrite “Some polynomials 
have no real zeros” making use 
of the existential quantifier.

There exists a polynomial with 
no real zeros.



Quantifiers

There exists a matrix 0 with the 
property that A + 0 = 0 + A  
for all matrices A.

For any real number x,   there 
exists an  integer  such  that    
n ≤ x < n + 1 



Quantifiers

Every positive integer is the 
product of primes.

Every nonempty set of positive 
integers has a smallest 
element.



To Negate Quantifiers

To negate a statement that 
involves one or more quantifiers in 
a useful way can be difficult.

In this situation begin with “It is not 
the case” and then to reflect on 
what you have written.



To Negate Quantifiers

“For every real number x, x has a 
real square root.”

“It is not the case that every real 
number x has a real square root.”

or

“There exists a real number that 
does not have a real square root.”



To Negate Quantifiers

The negation of “For all something, 
p” is the statement “There exists 
something such that ¬p.”

The negation of “There exists 
something such that p” is the 
statement “For all something, ¬p.”



To Negate Quantifiers

The negation of 

“There exists a and b for which ab ≠ ba”, 

is the statement

“For all a and b, ab = ba.”



The Symbols  ∀ and  ∃

The symbols  ∀ and  ∃ are commonly 
used for the quantifiers for all and 
there exists, respectively.

 ∀x,  ∃ n such that n > x 

or

 ∀x,  ∃ n, n > x



Some Assumptions 

The product of nonzero real numbers 
is nonzero.

The square of a nonzero real number 
is a positive real number.

A prime is a positive integer p > 1 that is 
divisible evenly only by  ± 1 and  ± p .



Some Assumptions 

An even integer is one that is of the 
form 2k for some integer k.

An odd integer is one that is of the 
form 2k + 1 for some integer k.

The product of two even integers is 
even.



Some Assumptions 

The product of two odd integers is 
odd.

The product of an odd integer and an 
even integer is even.

A real number is rational if it is a 
common fraction, that is, the quotient m/n
of the integers m and n with n≠0.



Some Assumptions 

A real number is irrational if it is not 
rational. For example π and 3√5

An irrational number has a decimal 
expansion that neither repeats nor 
terminates.



Proofs in Mathematics 

Many mathematical theorems are 
statements that a certain implication 
is true.

The hypothesis and conclusion of an 
implication could be any two 
statements, even statements 
completely unrelated to each other.



Proofs in Mathematics 

Suppose

“0 < x < 1 → x2 < 1”

To prove this statement a general 
argument must be given that works 
for all x between 0 and 1.



Proofs in Mathematics 

Assume that the hypothesis is true.

0 < x < 1 Hypothesis is true

x is a real number with 0 < x < 1

x > 0 and x < 1



Proofs in Mathematics 

Multiplying x < 1 by a positive such 
as x preserves the inequality. 

x . x < x . 1 

x2 < x

Since x < 1,  x2 < 1
↑ This argument works 
for all x between 0 and 1



Proofs in Mathematics 

Suppose

“x2 < 1 → 0 < x < 1 ” ← False

When x = - 1/2

(- 1/2)2 < 1 ← Left side is true

0 <- 1/2 < 1 ← Right side is False



Proofs in Mathematics 

To show that a theorem, or a step 
in a proof, is false, it is enough to 
find a single case where the 
implication does not hold.

To show that a theorem is true, we 
must give a proof that covers all 
possible cases.



Proofs in Mathematics 

Is the contrapositive of the following 
statement true?

“x2 ≥ 1 → (x ≤ 0 or x ≥ 1)”



Proofs in Mathematics 

“x2 + y2 = 0 ↔ (x = 0 and y = 0)”

This statement is of type A ↔ B

It can be expressed as “A is a 
necessary and sufficient condition 
for B”



Proofs in Mathematics 

The statement is of type 
(A and B) ↔ C

It can be expressed as “A and B are 
necessary and sufficient conditions 
for C.”



Proofs in Mathematics 

“A triangle has three equals angles” is a 
necessary and sufficient condition 
for “a triangle has three equal sides.”

To prove that “A ↔ B” is true, we 
must prove separately that “A → B”
and “B → A” are both true.



Proofs in Mathematics 

Prove that
“x2 + y2 = 0 ↔ (x =0 and y = 0)”

Assume x2 + y2 = 0 

Since the square of a real number cannot 
be negative and the square of a nonzero 
real number is positive .



Proofs in Mathematics 

If either “x2 ≠ 0 or y2 ≠ 0,  

the sum x2 + y2 would be positive, which 
is not true.

This means  x2 = 0 and  y2 = 0, so x = 0 
and y = 0, as desired.



Proofs in Mathematics 

A theorem in mathematics asserts  
that three or more statements are 
equivalent, meaning that all possible 
implications between pairs of 
statements are true.



Proofs in Mathematics 

“The following are equivalent:
1. A
2. B
3. C”

This means  that each of the double 
implications A↔ B, B ↔ C, A ↔ C is true.



Proofs in Mathematics 

A↔ B, B ↔ C, A ↔ C is true.

Instead of proving the truth of the 
six implications, it is more efficient 
just to establish the truth of the 
sequence

A → B → C



Example: Proofs in Mathematics 

Let x be  a real number. Show that 
the following are equivalent.

1. x = ±1.
2. x2 = 1.
3. If a is any real number, then ax = ±a



Example: Proofs in Mathematics 

It is sufficient to establish the truth 
of the sequence

(2) (1) (3) (2)

(x2 = 1) (x = ±1)
(x = ±1) (If a is any real number, then ax = ±a)
(If a is any real number, then ax = ±a) (x2 = 1)



Example: Proofs in Mathematics 

(2) (1) ← Assume (2) and prove (1)

Since 
x2 = 1, 0 = x2 – 1 = (x + 1)(x – 1)

Since the product of real numbers 
is zero if and only if one of the 
numbers is zero.



Example: Proofs in Mathematics 

(2) (1) ← Assume (2) and prove (1)

Either
x + 1 = 0   or   x – 1 = 0

Hence x = -1 or x = +1, as   
required.



Example: Proofs in Mathematics 

(1) (3) ← Assume (1) and prove (3)

Either x = +1 or x = –1
Let a be a real number. If x = +1, 
then ax = a . 1 = a.

If x = -1, then ax = -a

In every case, ax =  ±a as required.



Example: Proofs in Mathematics 

(3) (2) ← Assume (3) and prove (2)

Given that
ax = ±a for any real number a.

With a = 1, we obtain x = ±1 and 
squaring gives x2 = 1, as desired.



Direct Proofs

Most theorems in mathematics are 
stated  as implications: A → B.

Sometimes, it is possible to prove 
such a statement directly. 

By establishing the validity of a 
sequence of implications.



Prove that for all real numbers 
x, x2 – 4x + 17 ≠ 0

The left side of the inequality can 
be represented as 

x2 – 4x + 17 = x2 -4x + 4 + 13

= (x – 2)2 + 13



Prove that for all real numbers 
x, x2 – 4x + 17 ≠ 0

(x – 2)2 + 13 is the sum of 13 and a 
number.
(x – 2)2 is never negative

So, x2 – 4x + 17 ≥ 13 for any x;

In particular x2 – 4x + 17 ≠ 0



Suppose that x and y are real numbers 
such that 2x + y = 1 and x – y = -4

Prove that x = -1 and y = 3 

(2x + y = 1 and  x – y = -4) →

(2x + y) + (x – y) = 1 – 4 

2x + y + x – y = 1 – 4 
→ 3x = -3 → x = -1



Suppose that x and y are real numbers 
such that 2x + y = 1 and x – y = -4

Also,

(x = -1 and x – y = -4) →

(-1 – y = -4) → -y  = -1 + 4 = -3.
→ y  = -3.



Proof by Cases

A direct argument is made simpler by 
breaking it into a number of cases, 
one of which must hold and each of 
which leads to the desired conclusion.



Example: Proof by Cases

Let n be an integer. 
Prove that 9n2 + 3n – 2 is even.

Case 1. n is even
1. An integer is even if and only if twice 

another integer.  
2. n = 2k for some integer k.
3. Thus 9n2 + 3n – 2 = 36k2 + 6k – 2

= 2(18k2 + 3k – 1 )

↑ Even



Example: Proof by Cases

Case 2. n is odd.

1. An integer is odd if and only if it has the  
form 2k + 1  for some integer k.  

2. n = 2k + 1 for some integer k.
3. Thus 9n2 + 3n – 2 
= 9(4k2 + 4k + 1) + 3(2k + 1) – 2
= 36k2 + 42k + 10
= 2(18k2 + 21k + 5) Even



Prove the Contrapositive

“A → B” is true if an only if its 
contrapositive “¬A → ¬B” is true.

“A → B” is false if and only if A is 
true and B is false. 

That is, if and only if “¬B → ¬A” is 
false.



Prove the Contrapositive

Two statements 
“A → B” and “¬B → ¬A” are false 
together (or true together). 

They have the same true values. 
The result is proved.



Prove the Contrapositive

If the average of four different 
integers is 10, prove that one of the 
integers is greater than 11.

Let A and B the statements
A: ” The average of four integers, all 

different, is 10.”
B: “One of the four integers is 

greater than 11.”



Prove the Contrapositive

We will prove the truth of “A →B”
proving the truth of the contrapositive 
“¬B → ¬A.”

Using the theorem

“A → B” is true if an only if its 
contrapositive “¬B → ¬A” is true.



Prove the Contrapositive

Call the given integers a, b, c, d

If B is false, then each of these 
numbers is at most 11.



Prove the Contrapositive

Since they are all different, 

the biggest value for a + b + c + d  is 
11 + 10 + 9  +8 = 38.

So the biggest possible average would 
be 38/4, which is less than 10, so A is 
false.



Prove by Contradiction

Assuming that the negation of the 
statement A is true.

If this assumption leads to a statement 
that is obviously false (an absurdity) or 
to a statement that contradicts 
something else, then ¬A is false. 

So, A must be true.



Show that there is no largest integer

Let A be the statement “There is no 
largest number.”

If A is false, then there is a largest 
integer N.

This is absurd, however, because N+1 is 
an integer larger than N. Thus ¬A is 
false. So, A is true.



Example

Suppose that a is nonzero rational 
number and that b is an irrational 
number. Prove that ab is irrational.

By contradiction assume 
A: ab is irrational is false, then ab is 

rational, so ab = m / n for integers m 
and n, n ≠ 0.



Example

Now a is given to be rational, so a = k/l
for integers k and l, l ≠ 0, and k ≠ 0 
(because a ≠ 0).

b = m / na = ml / nk (ab = m/n)

with nk ≠ 0, so b is rational
↑ This is not true

By Contradiction , we have proven that A is true



Prove that √2 is an irrational number

If the statement is false, then there 
exist integers m and n such that 
√2=m/n. 

If both m and n are even, we can 
cancel 2’s in numerator and 
denominator until at least one of them is 
odd.



Prove that √2 is an irrational number

Without loss of generality, we may 
assume that not both m and n are even. 

Squaring both sides of √2 = m/n

2 = m2 / n2

m2 = 2n2 , so m2 is even.



Prove that √2 is an irrational number

The square of an odd integer is odd, 

m = 2k must be even

m2 = 2n2 

4k2 = 2n2

2k2 = n2.

↑ It implies that n is even, contradicting the 
fact that not both m and n are even.



Topics covered in this Meeting

Compound statements
And and Or
Implication and its converse
The Contrapositive
Quantifiers
Negation



Topics covered in this Meeting

Proofs in Mathematics
Direct Proof
Proof by cases
Proof the contrapositive
Proof by contradiction
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