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The Binary Relation ≤

The binary relation ≤ is

Reflexive: a ≤ a for all a ∈ R, 
Antisymmetric: if a ≤ b and b ≤ a, b 
∈ R, then a = b, and
Transitive: if a ≤ b and b ≤ c, 
for a, b, c ∈ R, then a ≤ c.



Properties of +  and .

Let a, b, and c be real numbers.

1. (closure) a + b and ab are both real 
numbers. 

2. (commutative) a + b = b + a and  
ab = ba.

3. (associativity) (a + b) + c = 
a + ( b+ c) and (ab)c = a(bc).



Properties of +  and .

4. (identities ) a + 0 = a and a . 1 = a.

5. (distributivity) a( b + c) = ab + ac 
and (a + b)c = ac + bc.

6. (additive inverse) a + (-a) = 0.

7. (multiplicative inverse) a(1/a) = 1    
if a ≠ 0.



Properties of +  and .

8. a ≤ b implies a + c ≤ b + c

9. a ≤ b and c ≥ 0 implies ac ≤ bc

10. a ≤ b and c ≤ 0 implies ac ≥ bc



Well-Ordering Principle

Any nonempty set of natural 
numbers has a smallest 
element.



4.1.3 Theorem

Given natural numbers a and b, 
there are unique nonnegative 
integers q and r, with 0 ≤ r < b, 
such that a = qb + r.

a = 58     q = 3
b = 17      r = 7



4.1.4 Definition

If a and b are natural numbers  and     
a = qb + r for nonnegative integers q and 
r with 0 ≤ r < b,

q the quotient,
r reminder when a is divided by b.

the quotient q = 3

the remainder r = 7



The Division Algorithm

Let a, b ∈ Z, b ≠ 0. Then there exist 
unique integers q and r, with 0 ≤ r < |b|,
such that a = qb + r

a b q r
-58 -17 4 7

q = ⎡-58/-17⎤ = ⎡3.41⎤ = 4

a < 0 and b < 0 q = The ceiling = 4



The Division Algorithm

Let a, b ∈ Z, b ≠ 0. Then there exist 
unique integers q and r, with 0 ≤ r < |b|,
such that a = qb + r

a b q r

-58 17 -4 10

q = ⎣-58/17⎦ = ⎣-3.41…⎦ = -4

q = The floor = -4a < 0 and b > 0



The Division Algorithm

Let a, b ∈ Z, b ≠ 0. Then there exist 
unique integers q and r, with 0 ≤ r < |b|,
such that a = qb + r

a b q r

58 -17 -3 7

q = ⎣-58/17⎦ = ⎡-3.41⎤ = -3

q = The ceiling = -3a > 0 and b < 0



The Division Algorithm

Let a, b ∈ Z, b ≠ 0. Then there exist 
unique integers q and r, with 0 ≤ r < |b|,
such that a = qb + r

a b q r

58 17 3 10

q = ⎣-58/17⎦ = ⎣3.4⎦ = 3

q = The floor = 3a > 0 and b > 0



4.1.6 Proposition

Let a, b ∈ Z, with 0 ≤ r < |b| then

q = ⎣a/b⎦ if b > 0 the floor

q = ⎡a/b⎤ if b < 0 the ceiling



Let a =-1027 and b = 38

b > 0 → ⎣a/b⎦ = ⎣-1027/38⎦

= ⎣-27.026…⎦ =-28 = q

a = bq + r → r = a – bq

r = -1027 – (38)(-28) 
= -1027 + 1064 
= 37



Number System

• Number system is a convention 
for representing quantities.

• There are several number 
systems.



Number Systems

• Decimal number System.

• Binary Number System.

• Octal Number System.

• Hexadecimal Number System.



Decimal Number System

The decimal number representation  (10 digits from 0 to 9).

(8x104) + (6x103) + (4x102) + (0x101) + (9x100) = 86,409

(positional  notation)



Decimal, Octal, Hexadecimal and Binary 
Equivalents 

Decimal        Octal            Hexadecimal            Binary
0                  08 0 0000
1                  1 1 0001
2                  2     2 0010
3                  3 3 0011
4                  4 4 0100
5                  5     5 0101
6                  6   6 0110
7                  7     7 0111



Decimal, Octal, Hexadecimal and Binary 
Equivalents 

Decimal        Octal            Hexadecimal            Binary
8                  10    8 1000
9                  11     9 1001 

10                  12    10 (A) 1010
11                  13  11 (B) 1011
12                  14 12 (C) 1100
13                  15   13 (D) 1101
14                  16  14 (E) 1110
15                  17     15 (F) 1111



Binary Number System

10101101 binary number representation of the decimal 173   

(1x27) + (1x25) + (1x22) + (1x21) + (1x20) = 173
(positional notation)



Converting a Binary Number to Decimal

110101 binary number representation

1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20

1 x 32 + 1 x 16 + 0 x 8 + 1 x 4 + 0 x 2 + 1 x 1

32 + 16 + 0 + 4 + 0 + 1 = 53



Converting  an Octal Number to Binary

Octal          Binary
08             0002

18 0012

28             0102

38 0112

48             1002

58 1012

68 1102

78            1112

6538 110 101 0112______ ___

Octal          Binary

58 1012

38 0112

68 1102



Hexadecimal Number System

FAD516 =
1111 1010 1101 01012

HexaDec BinaryDec.        Hexadecimal         Binary
5                       516 01012

6                       616 01102

7                       716 01112
8                       816 10002
9                       916 10012
10                    1016 (A)  10102
11                    1116 10112
12                    1216 11002
13                    1316 (D)   11012
14                    1416 11102
15                    1516 (F)   11112

F         11112

A         10102

D         11012

5         01012



Converting an Octal Number to Decimal

7614 octal number

7 x 83 + 6 x 82 + 1 x 81 + 4 x 80

7 x 512 + 6 x 64 + 1 x 8 + 4 x 1

3584+ 384 + 8 + 4  = 3980 decimal number



Converting Hexadecimal Number to Decimal

AD3B hexadecimal number

A x 163 + D x 162 + 3 x 161 + B x 160

10 x 163 + 13 x 162 + 3 x 161 + 11 x 160

10 x 4096 + 13 x 256 + 3 x 16 + 11 x 1

40960+ 3328 + 48 + 11  = 44347 decimal 
number



Converting Decimal Number to Binary

57  decimal number

1. Write the positional values from right to left 
until we reach a column whose positional 
value is less than the decimal number.

Position value as a power   25 24 23  22 21 20

Position value                      32  16   8   4    2   1

32 < 57



Converting Decimal Number to Binary

Position value as a power   25 24 23  22 21 20

Position value                      32  16   8   4    2   1
32 < 57

2. Divide this positional value 32 into 57. The 
result 1 is written in the column with value 32.

Position value           32  16   8   4    2   1
1



Converting Decimal Number to Binary (cont.)

3. The remainder 25. This value is greater than 
the following position value 16. 

4. Divide this positional value 16 into 25. The 
result 1 is written in the column with value 16.

Position value               32   16   8   4    2   1
1    1      



Converting Decimal Number to Binary (cont.)

5. The remainder 9. This value is greater than 
the following position value 8. 

6. Divide this positional value 8 into 9. The result 
1 is written in the column with value 8.

Position value            32  16   8   4    2   1
1 1    1   



Converting Decimal Number to Binary (cont.)

7.  The remainder 1. This value is equal to the 
position value 1. 

8.  The result 1 is written in the column with 
value 1, and zero in the columns 2 and 4

Position value       32   16    8     4     2     1
1     1     1     0     0     1  



Converting Decimal Number to Binary

Verify the results                   1  1  1  0  0  1 2

1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20

1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 1 x 1

32 + 16 + 8 + 0 + 1 = 57



Converting Decimal Number to Octal

103  decimal number

1. Write the positional values from right to left 
until we reach a column whose positional 
value is less than the decimal number.      

Position value as a power       83       82     81    80

Position value                         512    64    8     1
64 < 103



Converting Decimal Number to Octal

Position value as a power       83       82    81    80

Position value                         512     64    8     1
64 < 103

2. Divide this positional value 64 into 103. The 
result 1 is written in the column with value 64.

Position value 64   8   1
1



Converting Decimal Number to Octal (cont.)

3. The remainder 39. This value is greater than 
the following position value 8. 

4. Divide this positional value 8 into 39. The 
result 4 is written in the column with value 8.

Position value            64   8   1
1    4       



Converting Decimal Number to Octal (cont.)

5. The remainder 7. This value is greater than 
the following position value 1. 

6. Divide this positional value 1 into 7. The 
result 7 is written in the column with value 1.

Position value            64    8    1
1 4    7   



Converting Decimal Number to Octal

Verify the results                   1 4 78

1 x 82 + 4 x 81 + 7 x 80

1 x 64 + 4 x 8 + 7 x 1

64 + 32 + 7 = 103



Converting Decimal Number to Hexadecimal

375  decimal number

1. Write the positional values from right to left 
until we reach a column whose positional 
value is less than the decimal number.      

Position value as a power         162     161    160

Position value                            256    16      1
256 < 375



Converting Decimal Number to Hexadecimal

Position value as a power         162     161    160

Position value                            256    16      1
256 < 375

2. Divide this positional value 256 into 375. The 
result 1 is written in the column with value 256.

Position value 256   16   1
1



Converting Decimal Number to 
Hexadecimal (cont.)

3. The remainder 119. This value is greater 
than the following position value 16. 

4. Divide this positional value 16 into 119. The 
result 7 is written in the column with value 16.

Position value           256    16    1
1     7      



Converting Decimal Number to 
Hexadecimal (cont.)

5. The remainder 7. This value is greater than 
the following position value 1. 

6. Divide this positional value 1 into 7. The 
result 7 is written in the column with value 1.

Position value                  256   16   1
1       7    7   



Converting Decimal Number to Hexadecimal

Verify the results                   1 7 716

1 x 162 + 7 x 161 + 7 x 160

1 x 256 + 7 x 16 + 7 x 1

256 + 112 + 7 = 375



Two’s Complement Notation

• How computers represent negative 
numbers using two’s complement notation.

• How the  two’s complement of  a binary 
number is formed.

• Why it represents the negative value of 
the given binary number.



Two’s Complement Notation

• Consider a machine with 32-bit 
integers. 

• Suppose the integer value 13.



Two’s Complement Notation

• Consider a machine with 32-bit integers. 
Suppose the integer value 13.

• The 32-bit representation of value is

1 x 2
3

+  1 x 2
2

+  0 x 2
1

+  1 x 2
0 = 13



Two’s Complement Notation

• To form the negative of value we first form its 
one’s complement--ones become zeros and 
zeros become ones.

value :

00000000 00000000 00000000 00001101

one’s complement :

11111111 11111111 11111111 11110010



Two’s Complement Notation

• To form the two’s complement add one to the 
one’s complement

one’s complement :

11111111 11111111 11111111 11110010

two’s complement :

11111111 11111111 11111111 11110011

• This value represents -13



Verify the results

two’s complement (value –13):

11111111 11111111 11111111 11110011
value (13):

00000000 00000000 00000000 00001101

The addition between both amounts is zero

11111111 11111111 11111111 11110011
+ 00000000 00000000 00000000 00001101

00000000 00000000 00000000 00000000



Divisibility

• Given integers a and b with b ≠ 0, we 
say that b is a divisor or a factor of a
and that a is divisible by b if and only if  
a = qb for some integer q.

• b | a a is divisible by b (“b divides a.”)

• 1|n ∀ n integer, n ≠ 0
• n|0 ∀ n integer, n ≠ 0



4.2.2 Proposition

• The binary relation R on N defined by  
(a, b) ∈ R if and only if a | b is a partial 
order.

• 3 is a divisor of 18   or   3|18
• -7 is a divisor of 35  or  -7|35

Note: a|b “a divides b” or “b is divisible by a.”



Proof of 4.2.2 Proposition

The binary relation R  on N defined 
by (a, b) ∈ R if and only if a | b is a 
partial order.

Reflexive: For any a ∈ N, a | a because 
a = 1 . a

Note: a|b “a divides b” or “b is divisible by a.”



Proof of 4.2.2 Proposition

Antisymmetric: Suppose a, b ∈ N are such 
that a | b  and b | a. 

Then b = q1a for some natural number q1
and 

a = q2b for some natural number q2. 

Thus, a = q2(q1a) = (q1q2)a.



Proof of 4.2.2 Proposition

Thus, a = q2(q1a) = (q1q2)a.

Since a ≠ 0, q1q2 = 1, and 

since q1, and q2 are natural numbers, 

we must have  q1 = q2 =1; thus, a=b.



Proof of 4.2.2 Proposition

Transitive: if a, b, c ∈ N are such 
that a | b and b | c, 

then b = q1a and c = q2b 

for some natural numbers q1 and q2.

Thus c = q2b = q2(q1a) = (q1q2)a, 
with q1q2 a natural number. So a | c



4.2.3 Proposition

Suppose a, b, c ∈ N are such 
that c | a and c | b, then         
c |(xa + yb) for  any 
integers x and y.



Proof of 4.2.3 Proposition

Since c | a , a = q1c for some integer q1

Since c | b, b = q2c for some integer q2

Thus, xa + yb = xq1c + yq2c 
= (q1x + q2y)c

Since q1x + q2y is an integer,

c |(xa + xb),  as required.



The Greatest Common Divisor (gcd)

Let a and b be integers not both of which 
are 0.

An integer g is the gcd of a and b if and 
only if g is the largest common divisor of 
a and b; that is, if and only if

1. g | a, g | b and
2. If c is any integer such that c | a and     

c | b, then c ≤ g.



The Greatest Common Divisor (gcd)

The gcd of 15 and 6 is 3.

gcd(-24, 18) = 6

gcd(756, 210) = 42

gcd(-756, 210) = 42

gcd(-756, -210) = 42



4.2.3 Lemma

If a = qb + r for integers a, b, q, and r, 
then gcd(a, b) = gcd(b, r).

If a = b = 0 then a = qb + r , then r = 0

If b = r = 0 then a = 0

In either case, the result is true since 
neither gcd(a,b) nor gcd(b,r) is defined.



Euclidean Algorithm

Let a and b be natural numbers with      
b < a. To find the gcd of a and b, write

a = q1b + 1 with 0 ≤ r1 < b

If r1 ≠ 0  write b = q2r1 + r2, with 0 ≤ r2 < r1

If r2 ≠ 0  write r1 = q3r2 + r3, with 0 ≤ r3 < r2
If r3 ≠ 0  write r2 = q4r3 + r4, with 0 ≤ r4 < r3

Continue the process until some remainder 
rk+1 = 0. Then the gcd of a and b is rk, the 
last nonzero remainder.



Example of Euclidean Algorithm

Find the gcd of 287 and 91.

287 = 3 . 91 + 14

91 = 6 . 14 + 7

14 = 2 . 7 + 0

gcd(287,91) = gcd(14,7) = 7



Example of Euclidean Algorithm

Find the gcd of 287 and 91.

287 = 3 . 91 + 14

The last nonzero 
remainder is 7, 
so this is the 
gcd(287,91).

91 = 6 . 14 + 7

14 = 2 . 7 + 0

gcd(287,91) = gcd(14,7) = 7



The Least Common Multiple (lcm)

If a and b are nonzero integers, l is the 
least common multiple (lcm) of a and b 
and write l = lcm(a, b) if and only if l is 
positive integer satisfying

1. a | l,  b | l and,

2. If m is any positive integer such that 
a | m and b | m, then l ≤ m.



The Least Common Multiple (lcm)

The lcm of 4 and 14 is 28.

lcm(-6, 21) = 42

lcm(-5, -25) = 25

The lcm is always positive (by definition).

gcd(a, b)lmc(a, b) = |ab|



The Least Common Multiple (lcm)

gcd(a, b) . lmc(a, b) = |ab|

gcd(6, 21) . lmc(6, 21) = |6.21|

3. lcm(6, 21) = 6(21)

lcm(6, 21) = 6(21) / 3

lcm(6, 21) = 6(21) / 3 = 42



The Least Common Multiple (lcm)

gcd(a, b) . lmc(a, b) = |ab|

gcd(630, -196) = 14 

14 . lcm(630, -196) = 630(196)

lcm(630, -196) = 123480 / 14

lcm(630, -196) = 8820



Prime Numbers

A natural number p ≥ 2 is called prime if 
and only if natural numbers that divide p 
are p and 1.

A natural number n > 1 that is no prime 
is called composite.

Thus, n > 1 is composite if n = ab, 
where a and b are natural numbers with 
1 < a, b < n.



Prime Numbers

Given any natural number n > 1, there 
exists a prime p such that p | n.

There are infinitely many primes.

If a natural number n >1 is not prime, 
then n is divisible by some prime 
number p ≤ √n.



The Sieve of Eratosthenes

List all integers from 2 to n.

Circle 2 and then cross out all multiples of 
2 in the list.

Circle 3, the first number not yet crossed 
out or circled, and cross out all multiples 
of 3.



The Sieve of Eratosthenes

Circle 5, the first number not yet crossed 
out or circled, and cross out all multiples 
of 5.

Circle 7 and then cross out all multiples 
of 7 in the list.

At the general stage, circle the first 
number that is neither crossed out nor 
circled and cross out all its multiples.



The Sieve of Eratosthenes

Continue until all numbers less than or 
equal to √n have been circled or crossed 
out.

When the process is finished, those 
integers not crossed out are the primes 
not exceeding n.



The Sieve of Eratosthenes

List all integers 
from 2 to n.



The Sieve of Eratosthenes

Circle 2 and then 
cross out all 
multiples of 2 in 
the list.



The Sieve of Eratosthenes

Circle 3, the first 
number not yet 
crossed out or 
circled, and cross 
out all multiples 
of 3.



The Sieve of Eratosthenes

Circle 5, the first 
number not yet 
crossed out or 
circled, and cross 
out all multiples 
of 5.



The Sieve of Eratosthenes

Circle 7, the first 
number not yet 
crossed out or 
circled, and cross 
out all multiples 
of 7.



The Sieve of Eratosthenes

The primes less 
than 100 are 
those not crossed 
out.



The Sieve of Eratosthenes

The primes less 
than 100 are 
those not crossed 
out.



Congruence

Let n > 1 be a fixed natural number.

Given integers a and b, a is congruent to 
be modulo n (or a is congruent to b mod n 
for short) a  ≡ b (mod n),

If and only if n | (a – b). 

n is called the modulus of the congruence



Congruence

3  ≡ 17 (mod 7)  because 3 – 17 = -14 is 
divisible by 7;

-2  ≡ 13 (mod 3), because -2 – 13 = -15 is 
divisible by 3;

60  ≡ 10 (mod 25), because 60 – 10 = 50 
is divisible by 25;

-4  ≡ -49 (mod 9), because -4 + 49 = 45 
is divisible by 9;



Congruence is a binary relation on Z

Reflexive: a ≡ a (mod n) for any integer a.
Because a – a = 0 is divisible by n.

Symmetric: if a  ≡ b (mod n), then b  ≡ a 
(mod n). Because if n | (a – b) then 
n | (b – a) 

Transitive: if a  ≡ b (mod n) and 
b ≡ c (mod n), then a  ≡ c (mod n).  
Because if n | (a – b) then n | (b – c) 



The Congruence Class

The congruence class mod n of an integer 
a is the set of all integers to which a is 
congruent mod n. It is denoted ⎯a. Thus

⎯a = { b ∈ Z | a ≡ b (mod n)}

Note: Because congruence is symmetric is 
the same a ≡ b (mod n) or b ≡ a (mod n) 



4.4.3 Proposition

Let a, b, and n be integers with n > 1. 
Then the following statements are 
equivalent .

n | ( a – b)
a ≡ b (mod n)
a ∈ ⎯b
b ∈ ⎯a
⎯a = ⎯b



4.4.4 Corollary

For integers a, b, and n with n > 1,

a ≡ b (mod n) if and only if ⎯a = ⎯b

a ∈ ⎯b
b ∈ ⎯a
⎯a = ⎯b



Congruence

Let n = 5. Since -8 – 17 = -25 is divisible 
by 5, then -8 ≡ 17 (mod 5).

-8 belongs to the congruence class of 17 
(-8 ∈ ⎯17),  and 17 ∈ -⎯8. So -⎯8 = ⎯17



Congruence

Find all congruence classes of integers 
mod 5.

⎯0 ={b ∈ Z | b ≡ 0 (mod 5)}
= {b ∈ Z | 5 | (b – 0)}
= {b ∈ Z | b = 5k for some integer k}



Congruence

Congruence classes of integers mod 5.

⎯1 ={b ∈ Z | b ≡ 1 (mod 5)}
= {b ∈ Z | 5 | (b – 1)}
= {b ∈ Z | b – 1 = 5k for some integer k}
= {b ∈ Z | b = 5k + 1 for some integer k}



Congruence

Congruence classes of integers mod 5.

⎯2 ={b ∈ Z | b = 5k + 2 for some k ∈ Z}
= 5Z + 2

⎯3 ={b ∈ Z | b = 5k + 3 for some k ∈ Z}
= 5Z + 3

⎯4 ={b ∈ Z | b = 5k + 4 for some k ∈ Z}
= 5Z + 4



4.4.5 Proposition

Any integer is congruent mod to its 
remainder upon division by n.
There are n congruence classes of integers 
mod n corresponding to each of the n 
possible remainders.

⎯0 = nZ

⎯1 = nZ + 1 
⎯2 = nZ + 2

⎯n-1 = nZ + (n – 1 )



4.4.6 Definition

If n > 1 is a natural number and a is any 
integer, a (mod n) is the remainder r.

0 ≤ r < n, obtained when a is divided by n.

-17 (mod 5) = 3
28 (mod 6) = 4
-30 (mod 9) = 6
The integer 29 is 5 mod 6



4.4.6 Definition

-17 (mod 5) = 3

-17/5 = -3.4

5 > 0, so ⎣-17/5⎦ = -4 floor

-17 = -4(5) + 3 = -20 + 3 remainder



4.4.6 Definition

28 (mod 6) = 6

28/6 = 4.66

6 > 0, so ⎣28/6⎦ = 4 floor

28 = 4(6) + 4 =  24 + 4 remainder



4.4.6 Definition

-30 (mod 9) = 4

-30/9 = -3.33

9 > 0, so ⎣-30/9⎦ = -4 floor

-30 = -4(9) + 6 = -36 + 6 remainder



4.4.6 Definition

29 (mod 6) = 5

29/6 = 4.83

6 > 0, so ⎣29/6⎦ = 4 floor

29 = 4(6) + 5 = 24 + 5 remainder



Topics covered

The Division Algorithm 

The division algorithm
Representing natural numbers in various 
bases.

Divisibility and the Euclidean algorithm.
gcd
Lcm

Prime numbers
Congruence 
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