Foundations of Discrete Mathematics

Chapter 4

By Dr. Dalia M. Gil, Ph.D.

The Binary Relation \leq

The binary relation \leq is
\square Reflexive: $a \leq a$ for all $a \in R$,
\square Antisymmetric: if $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{a}, \mathrm{b}$ $\in R$, then $a=b$, and
\square Transitive: if $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c}$, for $a, b, c \in R$, then $a \leq c$.

Properties of + and .

Let a, b, and c be real numbers.

1. (closure) $a+b$ and $a b$ are both real numbers.
2. (commutative) $a+b=b+a$ and $a b=b a$.
3. (associativity) $(a+b)+c=$ $a+(b+c)$ and $(a b) c=a(b c)$.

Properties of + and.

4. (identities) $a+0=a$ and $a \cdot 1=a$.
5. (distributivity) $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$.
6. (additive inverse) $a+(-a)=0$.
7. (multiplicative inverse) $a(1 / a)=1$ if $a \neq 0$.

Properties of + and .

8. $\mathrm{a} \leq \mathrm{b}$ implies $\mathrm{a}+\mathrm{c} \leq \mathrm{b}+\mathrm{c}$
9. $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \geq 0$ implies $\mathrm{ac} \leq \mathrm{bc}$
10. $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \leq 0$ implies $\mathrm{ac} \geq \mathrm{bc}$

Well-Ordering Principle

Any nonempty set of natural numbers has a smallest element.

4.1.3 Theorem

Given natural numbers a and b, there are unique nonnegative integers q and r, with $0 \leq r<b$, such that $a=q b+r$.
$a=58$
$b=17$
$q=3$
$r=7$

4.1.4 Definition

ㅁ If a and b are natural numbers and $a=q b+r$ for nonnegative integers q and r with $0 \leq r<b$,
$\square \mathrm{q} \leftarrow$ the quotient,
$r \leftarrow$ reminder when a is divided by b.

17 | $\mathbf{3}$ |
| :---: |
| $\frac{\mathbf{5 8}}{7}$ |

the quotient $\mathrm{q}=3$
the remainder $r=7$

The Division Algorithm

\square Let $a, b \in Z, b \neq 0$. Then there exist unique integers q and r, with $0 \leq r<|b|$, such that $a=q b+r$

\mathbf{a}	\mathbf{b}	\mathbf{q}	\mathbf{r}
-58	-17	4	7

$$
q=\lceil-58 /-17\rceil=\lceil 3.41\rceil=4
$$

$$
a<0 \text { and } b<0 \quad \uparrow q=\text { The ceiling }=4
$$

The Division Algorithm

\square Let $a, b \in Z, b \neq 0$. Then there exist unique integers q and r, with $0 \leq r<|b|$, such that $a=q b+r$

\mathbf{a}	\mathbf{b}	\mathbf{q}	\mathbf{r}
-58	17	-4	10

$$
q=\lfloor-58 / 17\rfloor=\lfloor-3.41 \ldots\rfloor=-4
$$

$\mathrm{a}<0$ and $\mathrm{b}>0$
$\uparrow q=$ The floor $=-4$

The Division Algorithm

\square Let $a, b \in Z, b \neq 0$. Then there exist unique integers q and r, with $0 \leq r<|b|$, such that $a=q b+r$

\mathbf{a}	\mathbf{b}	\mathbf{q}	\mathbf{r}
58	-17	-3	7

$$
q=\lfloor-58 / 17\rfloor=\lceil-3.41\rceil=-3
$$

$a>0$ and $b<0 \quad \uparrow q=$ The ceiling $=-3$

The Division Algorithm

\square Let $a, b \in Z, b \neq 0$. Then there exist unique integers q and r, with $0 \leq r<|b|$, such that $a=q b+r$

\mathbf{a}	\mathbf{b}	\mathbf{q}	\mathbf{r}
58	17	3	10
$q=\lfloor-58 / 17\rfloor=\lfloor 3.4\rfloor=3$			

$$
a>0 \text { and } b>0 \quad \uparrow q=\text { The floor }=3
$$

4.1.6 Proposition

Let $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$, with $0 \leq \mathrm{r}<|\mathrm{b}|$ then
ㅁ $q=\lfloor a / b\rfloor$ if $b>0 \leftarrow$ the floor

ㅁ $q=\lceil a / b\rceil$ if $b<0 \leftarrow$ the ceiling

Let $\mathrm{a}=-1027$ and $\mathrm{b}=38$

$$
b>0 \rightarrow\lfloor a / b\rfloor=\lfloor-1027 / 38\rfloor
$$

$$
=\lfloor-27.026 \ldots\rfloor=-28=q
$$

$$
a=b q+r \rightarrow r=a-b q
$$

$$
\begin{aligned}
r & =-1027-(38)(-28) \\
& =-1027+1064 \\
& =37
\end{aligned}
$$

Number System

- Number system is a convention for representing quantities.
- There are several number systems.

Number Systems

- Decimal number System.
- Binary Number System.
- Octal Number System.
- Hexadecimal Number System.

Decimal Number System

The decimal number representation (10 digits from 0 to 9).

$\left(8 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(4 \times 10^{2}\right)+\left(0 \times 10^{1}\right)+\left(9 \times 10^{0}\right)=86,409$
(positional notation)

Decimal, Octal, Hexadecimal and Binary Equivalents

Decimal	Octal	Hexadecimal	Binary
0	0_{8}	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011
4	4	4	0100
5	5	5	0101
6	6	6	0110
7	7	7	0111

Decimal, Octal, Hexadecimal and Binary Equivalents

Decimal	Octal	Hexadecimal	Binary
8	10	8	1000
9	11	9	1001
10	12	$10(\mathrm{~A})$	1010
11	13	11 (B)	1011
12	14	$12(\mathrm{C})$	1100
13	15	$13(\mathrm{D})$	1101
14	16	$14(\mathrm{E})$	1110
15	17	$15(\mathrm{~F})$	1111

Binary Number System

 10101101 \& binary number representation of the decimal 173

Sign
$\left(1 \times 2^{7}\right)+\left(1 \times 2^{5}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=173$
(positional notation)

Converting a Binary Number to Decimal

110101 < binary number representation

$$
1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
$$

$1 \times 32+1 \times 16+0 \times 8+1 \times 4+0 \times 2+1 \times 1$
$32+16+0+4+0+1=\underline{53}$

Converting an Octal Number to Binary

Octal		Binary			
0_{8}	\rightarrow	0002	$653_{8} \rightarrow \underline{110} \underline{101} \underline{011_{2}}$		
18	\rightarrow	0012			
28	\rightarrow	$010{ }_{2}$			
3_{8}	\rightarrow	011 ${ }_{2}$	Octal		Binary
48	\rightarrow	1002		\rightarrow	110_{2}
58	\rightarrow	1012			
68	\rightarrow	110_{2}		\rightarrow	1012
7_{8}	\rightarrow	111_{2}	3_{8}		011 ${ }_{2}$

Hexadecimal Number System

Dec.	Hexadecimal		Binary			Binary
6	$5{ }_{16}$	$\xrightarrow{\rightarrow}$	0101 0110	F		$1111{ }_{2}$
6	616 7 7	$\xrightarrow{\rightarrow}$	0110_{2} 0111	A		
8	8_{16}	\rightarrow	$1000{ }_{2}$	A		$1010{ }^{101}$
9	916	\rightarrow	10012	D		11012
10	$10_{16}(\mathrm{~A})$ 11_{16}	$\xrightarrow{\rightarrow}$	1010 1011	5	\rightarrow	01012
12	1216	\rightarrow	$110{ }_{2}$	FAD5 $_{16}=$		
13	1316 (D)	\rightarrow	$1101{ }_{2}$			
14	14_{16}	\rightarrow	$1111{ }_{2}$			
15	$15_{16}(\mathrm{~F})$	\rightarrow	$1111{ }_{2}$	1111	10	01012

Converting an Octal Number to Decimal

$7614 \leftarrow$ octal number
$7 \times 8^{3}+6 \times 8^{2}+1 \times 8^{1}+4 \times 8^{0}$

$$
7 \times 512+6 \times 64+1 \times 8+4 \times 1
$$

$3584+384+8+4=\underline{3980} \leftarrow$ decimal number

Converting Hexadecimal Number to Decimal

AD3B \leftarrow hexadecimal number

$A \times 16^{3}+D \times 16^{2}+3 \times 16^{1}+B \times 16^{0}$
$10 \times 16^{3}+13 \times 16^{2}+3 \times 16^{1}+11 \times 16^{0}$
$10 \times 4096+13 \times 256+3 \times 16+11 \times 1$
$40960+3328+48+11=\underline{44347} \leftarrow$ decimal number

Converting Decimal Number to Binary

$57 \leftarrow$ decimal number

1. Write the positional values from right to left until we reach a column whose positional value is less than the decimal number.

Position value as a power $\begin{array}{lllllll}2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$ $\begin{array}{llllll}\text { Position value } & 32 & 16 & 8 & 4 & 2\end{array}$
$32<57$

Converting Decimal Number to Binary

Position value as a power $\begin{array}{llllllll}25 & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$
Position value

$$
\begin{array}{llllll}
32 & 16 & 8 & 4 & 2 & 1
\end{array}
$$

$$
32<57
$$

2. Divide this positional value 32 into 57 . The result 1 is written in the column with value 32.

Position value
$\begin{array}{llllll}32 & 16 & 8 & 4 & 2 & 1\end{array}$
1

Converting Decimal Number to Binary (cont.)
3. The remainder 25. This value is greater than the following position value 16.
4. Divide this positional value 16 into 25 . The result 1 is written in the column with value 16.

Position value 32168421
11

Converting Decimal Number to Binary (cont.)

5. The remainder 9 . This value is greater than the following position value 8 .
6. Divide this positional value 8 into 9 . The result 1 is written in the column with value 8 .

Position value

$$
\begin{array}{cccccc}
32 & 16 & 8 & 4 & 2 & 1 \\
1 & 1 & 1 & & &
\end{array}
$$

Converting Decimal Number to Binary (cont.)

7. The remainder 1. This value is equal to the position value 1.
8. The result 1 is written in the column with value 1 , and zero in the columns 2 and 4
$\begin{array}{lcccccc}\text { Position value } & 32 & 16 & 8 & 4 & 2 & 1 \\ & 1 & 1 & 1 & 0 & 0 & 1\end{array}$

Converting Decimal Number to Binary

Verify the results

$1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$1 \times 32+1 \times 16+1 \times 8+0 \times 4+0 \times 2+1 \times 1$

$$
32+16+8+0+1=57
$$

Converting Decimal Number to Octal

$103 \leftarrow$ decimal number

1. Write the positional values from right to left until we reach a column whose positional value is less than the decimal number.
$\begin{array}{llllll}\text { Position value as a power } & 8^{3} & 8^{2} & 8^{1} & 8^{0}\end{array}$
Position value
$\begin{array}{llll}512 & 64 & 8 & 1\end{array}$
$64<103$

Converting Decimal Number to Octal

\section*{Position value as a power Position value
 | 8^{3} | 8^{2} | 8^{1} | 8^{0} |
| :---: | :---: | :---: | :---: |
| 512 | 64 | 8 | 1 |}

$64<103$
2. Divide this positional value 64 into 103. The result 1 is written in the column with value 64.

Converting Decimal Number to Octal (cont.)

3. The remainder 39. This value is greater than the following position value 8 .
4. Divide this positional value 8 into 39 . The result 4 is written in the column with value 8 .

Position value

$$
\begin{array}{ccc}
64 & 8 & 1 \\
1 & 4 &
\end{array}
$$

Converting Decimal Number to Octal (cont.)

5. The remainder 7. This value is greater than the following position value 1 .
6. Divide this positional value 1 into 7 . The result 7 is written in the column with value 1 .

Position value $\begin{array}{lll}64 & 8 & 1 \\ 1 & 4 & 7\end{array}$

Converting Decimal Number to Octal

Verify the results
 147_{8}

$$
1 \times 8^{2}+4 \times 8^{1}+7 \times 8^{0}
$$

$1 \times 64+4 \times 8+7 \times 1$

$$
64+32+7=103
$$

Converting Decimal Number to Hexadecimal

$375 \leftarrow$ decimal number

1. Write the positional values from right to left until we reach a column whose positional value is less than the decimal number.

Position value as a power
$\begin{array}{lll}16^{2} & 16^{1} & 16^{0}\end{array}$ Position value

256161
$256<375$

Converting Decimal Number to Hexadecimal

$\begin{array}{llll}\text { Position value as a power } & 16^{2} & 16^{1} & 16^{0}\end{array}$ Position value

$$
256<375
$$

2. Divide this positional value 256 into 375 . The result 1 is written in the column with value 256.

$\begin{array}{llll}\text { Position value } & 256 \quad 16 & 1\end{array}$
 1

Converting Decimal Number to Hexadecimal (cont.)

3. The remainder 119. This value is greater than the following position value 16.
4. Divide this positional value 16 into 119. The result 7 is written in the column with value 16.

Position value

$256 \quad 16 \quad 1$
17

Converting Decimal Number to Hexadecimal (cont.)

5. The remainder 7. This value is greater than the following position value 1.
6. Divide this positional value 1 into 7 . The result 7 is written in the column with value 1.

Position value

$$
\begin{array}{ccc}
256 & 16 & 1 \\
1 & 7 & 7
\end{array}
$$

Converting Decimal Number to Hexadecimal

Verify the results
177_{16}
$1 \times 16^{2}+7 \times 16^{1}+7 \times 16^{0}$
$1 \times 256+7 \times 16+7 \times 1$
$256+112+7=375$

Two's Complement Notation

- How computers represent negative numbers using two's complement notation.
- How the two's complement of a binary number is formed.

Why it represents the negative value of the given binary number.

Two's Complement Notation

- Consider a machine with 32-bit integers.
- Suppose the integer value 13.

Two's Complement Notation

- Consider a machine with 32 -bit integers. Suppose the integer value 13.

The 32-bit representation of value is $00000000000000000000000000001101-2^{0}$

$$
1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=13
$$

Two's Complement Notation

To form the negative of value we first form its one's complement--ones become zeros and zeros become ones.
value:

00000000000000000000000000001101

one's complement:

Two's Complement Notation

To form the two's complement add one to the one's complement
one's complement :
11111111111111111111111111110010
two's complement :

11111111111111111111111111110011

- This value represents - $\mathbf{1 3}$

Verify the results

two's complement (value -13):

11111111111111111111111111110011

value (13):

00000000000000000000000000001101

The addition between both amounts is zero

11111111111111111111111111110011
+ 00000000000000000000000000001101

00000000000000000000000000000000

Divisibility

- Given integers \mathbf{a} and \mathbf{b} with $\mathbf{b} \neq 0$, we say that \mathbf{b} is a divisor or a factor of \mathbf{a} and that \mathbf{a} is divisible by \mathbf{b} if and only if $\mathbf{a}=\mathbf{q} \mathbf{b}$ for some integer \mathbf{q}.
- $\mathbf{b} \mid \mathbf{a} \leqslant \mathbf{a}$ is divisible by \mathbf{b} ("b divides \mathbf{a}.")
- $1 \mid n \forall n$ integer, $n \neq 0$
- $n \mid 0 \forall n$ integer, $n \neq 0$

4.2.2 Proposition

- The binary relation R on N defined by $(a, b) \in R$ if and only if $a \mid b$ is a partial order.

> - 3 is a divisor of 18 or $3 \mid 18$
> --7 is a divisor of 35 or $-7 \mid 35$

Note: $\mathbf{a} \mid \mathbf{b}$ "a divides \mathbf{b} " or " \mathbf{b} is divisible by \mathbf{a}."

Proof of 4.2.2 Proposition

The binary relation R on N defined

 by $(a, b) \in R$ if and only if $a \mid b$ is a partial order.Reflexive: For any a $\in N$, a | a because

$$
a=1 \cdot a
$$

Note: $\mathbf{a} \mid \mathbf{b}$ "a divides \mathbf{b} " or " \mathbf{b} is divisible by \mathbf{a}."

Proof of 4.2.2 Proposition

\square Antisymmetric: Suppose $a, b \in N$ are such that $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$.
\square Then $b=q_{1} a$ for some natural number q_{1} and
$\square a=q_{2} b$ for some natural number q_{2}.
\square Thus, $a=q_{2}\left(q_{1} a\right)=\left(q_{1} q_{2}\right) a$.

Proof of 4.2.2 Proposition

\square Thus, $a=q_{2}\left(q_{1} a\right)=\left(q_{1} q_{2}\right) a$.
\square Since $a \neq 0, q_{1} q_{2}=1$, and
\square since q_{1}, and q_{2} are natural numbers,
\square we must have $q_{1}=q_{2}=1$; thus, $a=b$.

Proof of 4.2.2 Proposition

\square Transitive: if $a, b, c \in N$ are such that $a \mid b$ and $b \mid c$,
\square then $b=q_{1} a$ and $c=q_{2} b$
for some natural numbers q_{1} and q_{2}.
\square Thus $c=q_{2} b=q_{2}\left(q_{1} a\right)=\left(q_{1} q_{2}\right) a$, with $q_{1} q_{2}$ a natural number. So a |c

4.2.3 Proposition

\square Suppose a, b, c $\in N$ are such that $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$, then $c \mid(x a+y b)$ for any integers x and y.

Proof of 4.2.3 Proposition

\square Since $c \mid a, a=q_{1} c$ for some integer q_{1}
\square Since $c \mid b, b=q_{2} c$ for some integer q_{2}
\square Thus, $x a+y b=x q_{1} c+y q_{2} c$

$$
=\left(q_{1} x+q_{2} y\right) c
$$

\square Since $q_{1} x+q_{2} y$ is an integer, $c \mid(x a+x b)$, as required.

The Greatest Common Divisor (gcd)

\square Let a and b be integers not both of which are 0.
\square An integer g is the gcd of a and b if and only if g is the largest common divisor of a and b; that is, if and only if

1. $g|a, g| b$ and
2. If c is any integer such that $c \mid a$ and $c \mid b$, then $c \leq g$.

The Greatest Common Divisor (gcd)

ㅁ The gcd of 15 and 6 is 3 .
$\square \operatorname{gcd}(-24,18)=6$
ㅁ $\operatorname{gcd}(756,210)=42$
$\square \operatorname{gcd}(-756,210)=42$
$\square \operatorname{gcd}(-756,-210)=42$

4.2.3 Lemma

\square If $a=q b+r$ for integers a, b, q, and r, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

ㅁ If $a=b=0$ then $a=q b+r$, then $r=0$
ㅁ If $b=r=0$ then $a=0$
\square In either case, the result is true since neither $\operatorname{gcd}(a, b)$ nor $\operatorname{gcd}(b, r)$ is defined.

Euclidean Algorithm

\square Let a and b be natural numbers with $b<a$. To find the gcd of a and b, write

$$
a=q_{1} b+1 \text { with } 0 \leq r_{1}<b
$$

If $r_{1} \neq 0$ write $b=q_{2} r_{1}+r_{2}$, with $0 \leq r_{2}<r_{1}$
If $r_{2} \neq 0$ write $r_{1}=q_{3} r_{2}+r_{3}$, with $0 \leq r_{3}<r_{2}$
If $r_{3} \neq 0$ write $r_{2}=q_{4} r_{3}+r_{4}$, with $0 \leq r_{4}<r_{3}$
Continue the process until some remainder $r_{k+1}=0$. Then the gcd of a and b is r_{k}, the last nonzero remainder.

Example of Euclidean Algorithm

\square Find the gcd of 287 and 91.

$$
\begin{aligned}
& \square 287=3.91+14 \begin{array}{c}
\left.91 \begin{array}{c}
3 \\
\frac{3}{287} \\
14
\end{array}\right)
\end{array} \\
& \square 91=6.14+7 \quad 14 \begin{array}{r}
\frac{6}{91} \\
\frac{84}{7}
\end{array} \\
& \text { ㅁ } 14=2.7+0 \\
& \begin{array}{r}
2 \\
7 \begin{array}{r}
14 \\
\frac{14}{0}
\end{array}
\end{array} \\
& \operatorname{gcd}(287,91)=\operatorname{gcd}(14,7)=7
\end{aligned}
$$

Example of Euclidean Algorithm

\square Find the gcd of 287 and 91.
ㅁ $287=3.91+14$
ㅁ The last nonzero remainder is 7 , so this is the $\operatorname{gcd}(287,91)$.

ㅁ $14=2.7+0$

$$
\operatorname{gcd}(287,91)=\operatorname{gcd}(14,7)=7
$$

The Least Common Multiple (lcm)

\square If a and b are nonzero integers, c is the least common multiple (lcm) of a and b and write $\ell=\operatorname{Icm}(\mathrm{a}, \mathrm{b})$ if and only if ℓ is positive integer satisfying

1. $\mathrm{a}|e, \mathrm{~b}| e$ and,
2. If m is any positive integer such that $\mathrm{a} \mid \mathrm{m}$ and $\mathrm{b} \mid \mathrm{m}$, then $\mathrm{c} \leq \mathrm{m}$.

The Least Common Multiple (lcm)

ㅁ The Icm of 4 and 14 is 28.
$\square \operatorname{lcm}(-6,21)=42$
$\square \operatorname{lcm}(-5,-25)=25$
\square The Icm is always positive (by definition). $\operatorname{gcd}(a, b) \operatorname{Imc}(a, b)=|a b|$

The Least Common Multiple (lcm)

$$
\operatorname{gcd}(a, b) \cdot \operatorname{Imc}(a, b)=|a b|
$$

$\square \operatorname{gcd}(6,21) \cdot \operatorname{Imc}(6,21)=|6.21|$
ㅁ 3. $\operatorname{lcm}(6,21)=6(21)$
$\square \operatorname{lcm}(6,21)=6(21) / 3$
$\square \operatorname{lcm}(6,21)=6(21) / 3=42$

The Least Common Multiple (lcm)

$\operatorname{gcd}(a, b) \cdot \operatorname{Imc}(a, b)=|a b|$

$$
\operatorname{gcd}(630,-196)=14
$$

14. $\operatorname{Icm}(630,-196)=630(196)$
$\operatorname{lcm}(630,-196)=123480 / 14$
$\operatorname{lcm}(630,-196)=\underline{8820}$

Prime Numbers

A natural number $p \geq 2$ is called prime if and only if natural numbers that divide p are p and 1 .

A natural number $\mathrm{n}>1$ that is no prime is called composite.

Thus, $n>1$ is composite if $n=a b$, where a and b are natural numbers with $1<a, b<n$.

Prime Numbers

\square Given any natural number $n>1$, there exists a prime p such that $p \mid n$.
$\square \quad$ There are infinitely many primes.

- If a natural number $n>1$ is not prime, then n is divisible by some prime number $p \leq \sqrt{ }$.

The Sieve of Eratosthenes

L List all integers from 2 to n .
\square Circle 2 and then cross out all multiples of 2 in the list.

- Circle 3, the first number not yet crossed out or circled, and cross out all multiples of 3 .

The Sieve of Eratosthenes

\square Circle 5, the first number not yet crossed out or circled, and cross out all multiples of 5 .
\square Circle 7 and then cross out all multiples of 7 in the list.
\square At the general stage, circle the first number that is neither crossed out nor circled and cross out all its multiples.

The Sieve of Eratosthenes

\square Continue until all numbers less than or equal to $\sqrt{ } n$ have been circled or crossed out.
\square When the process is finished, those integers not crossed out are the primes not exceeding n .

The Sieve of Eratosthenes

2	3	4	5	6	7	8	9	10	11	
12	13	14	15	16	17	18	19	20	21	
22	23	24	25	26	27	28	29	30	31	
32	33	34	35	36	37	38	39	40	41	List allintegers
42	43	44	45	46	47	48	49	50	51	from 2 ton.
52	53	54	55	56	57	58	59	60	61	
62	63	64	65	66	67	68	69	70	71	
72	73	74	75	76	77	78	79	80	81	
82	83	84	85	86	87	88	89	90	91	
92	93	94	95	96	97	98	99	100		

The Sieve of Eratosthenes

The Sieve of Eratosthenes

The Sieve of Eratosthenes

$33^{3} 3834$	number not yet
	crossed out or
	circled, and cross
${ }_{62} 63$	out all multiples
7273	of 5 .

The Sieve of Eratosthenes

	number not yet
	crossed out or
	circled, and cross
62	out all multiples
	of 7 .

The Sieve of Eratosthenes

```
(2) (3) A
    12
    224
    322
    42
    52
    62 格
72
```



```
92
```

The primes less than 100 are those not crossed out.

The Sieve of Eratosthenes

(2)	(3)	4	(5)	6	(7)	8	9	10	11	
12	13	14	15	16	17	18	19	20	21	
22	$\underline{23}$	24	25	26	27	28	$\underline{29}$	30	31	The primes less
32	33	34	35	36	37	38	39	40	41	than 100 are
42	43	44	45	46	47	48	49	50	51	those not crossed
52	53	54	55	56	57	58	59	60	61	out.
62	63	64	65	66	67	68	69	70	71	
72	73	74	75	76	77	78	79	80	81	
82	83	84	85	86	87	88	89	90	91	
92	93	94	95	96	$\underline{97}$	98	99	100		

Congruence

\square Let $\mathrm{n}>1$ be a fixed natural number.
\square Given integers a and b, a is congruent to be modulo n (or a is congruent to $\mathrm{b} \bmod \mathrm{n}$ for short) $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$,
\square If and only if n | (a b).
$\square \mathrm{n}$ is called the modulus of the congruence

Congruence

$\square 3 \equiv 17(\bmod 7)$ because $3-17=-14$ is divisible by 7;
$\square-2 \equiv 13(\bmod 3)$, because $-2-13=-15$ is divisible by $3 ;$
$\square 60 \equiv 10(\bmod 25)$, because $60-10=50$ is divisible by 25;
$\square-4 \equiv-49(\bmod 9)$, because $-4+49=45$ is divisible by 9 ;

Congruence is a binary relation on Z

- Reflexive: $a \equiv a(\bmod n)$ for any integer a. Because $a-a=0$ is divisible by n.
\square Symmetric: if $a \equiv b(\bmod n)$, then $b \equiv a$ $(\bmod n)$. Because if $n \mid(a-b)$ then $\mathrm{n} \mid(\mathrm{b}-\mathrm{a})$
\square Transitive: if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$. Because if $n \mid(a-b)$ then $n \mid(b-c)$

The Congruence Class

\square The congruence class mod n of an integer a is the set of all integers to which a is congruent mod n . It is denoted a . Thus

$$
\bar{a}=\{b \in Z \mid a \equiv b(\bmod n)\}
$$

Note: Because congruence is symmetric is the same $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ or $\mathrm{b} \equiv \mathrm{a}(\bmod \mathrm{n})$

4.4.3 Proposition

\square Let a, b, and n be integers with $\mathrm{n}>1$. Then the following statements are equivalent.
$\square \mathrm{n} \mid(\mathrm{a}-\mathrm{b})$
$\square a \equiv b(\bmod n)$
$\square a \in \bar{b}$
ㅁ $\mathrm{b} \in \overline{\mathrm{a}}$
ㅁ $\overline{\mathrm{a}}=\overline{\mathrm{b}}$

4.4.4 Corollary

\square For integers a, b, and n with $\mathrm{n}>1$,

$$
\mathrm{a} \equiv \mathrm{~b}(\bmod \mathrm{n}) \text { if and only if } \overline{\mathrm{a}}=\overline{\mathrm{b}}
$$

$\square a \in \bar{b}$
$\square b \in \bar{a}$
ㅁ $\bar{a}=\bar{b}$

Congruence

\square Let $\mathrm{n}=5$. Since $-8-17=-25$ is divisible by 5 , then $-8 \equiv 17(\bmod 5)$.
$\square-8$ belongs to the congruence class of 17 $(-8 \in \overline{1} 7)$, and $17 \in-\overline{8}$. So $-\overline{8}=\overline{1} 7$

Congruence

\square Find all congruence classes of integers mod 5.

$$
\begin{aligned}
\overline{0} & =\{b \in Z \mid b \equiv 0(\bmod 5)\} \\
& =\{b \in Z|5|(b-0)\} \\
& =\{b \in Z \mid b=5 k \text { for some integer } k\}
\end{aligned}
$$

Congruence

ㅁ Congruence classes of integers mod 5.

$$
\begin{aligned}
\overline{1} & =\{b \in Z \mid b \equiv 1(\bmod 5)\} \\
& =\{b \in Z|5|(b-1)\} \\
& =\{b \in Z \mid b-1=5 k \text { for some integer } k\} \\
& =\{b \in Z \mid b=5 k+1 \text { for some integer } k\}
\end{aligned}
$$

Congruence

\square Congruence classes of integers mod 5 .

$$
\begin{aligned}
\overline{2} & =\{b \in Z \mid b=5 k+2 \text { for some } k \in Z\} \\
& =5 Z+2
\end{aligned}
$$

$$
\overline{3}=\{b \in Z \mid b=5 k+3 \text { for some } k \in Z\}
$$

$$
=5 Z+3
$$

$$
\overline{4}=\{b \in Z \mid b=5 k+4 \text { for some } k \in Z\}
$$

$$
=5 Z+4
$$

4.4.5 Proposition

\square Any integer is congruent mod to its remainder upon division by n.
\square There are n congruence classes of integers mod n corresponding to each of the n possible remainders.
$\overline{0}=n Z$
$\overline{1}=n Z+1$

$$
\bar{n}-1=n Z+(n-1)
$$

$\overline{2}=n Z+2$

4.4.6 Definition

- If $\mathrm{n}>1$ is a natural number and a is any integer, $a(\bmod n)$ is the remainder r.
$0 \leq r<n$, obtained when a is divided by n.
ㅁ $-17(\bmod 5)=3$
ㅁ $28(\bmod 6)=4$
$\square-30(\bmod 9)=6$
\square The integer 29 is $5 \bmod 6$

4.4.6 Definition

$\square-17(\bmod 5)=3$

ㅁ $-17 / 5=-3.4$

ㅁ $5>0$, so $\lfloor-17 / 5\rfloor=-4<$ floor
$\square-17=-4(5)+3=-20+3 \leftarrow$ remainder

4.4.6 Definition

ㅁ $28(\bmod 6)=6$

ㅁ $28 / 6=4.66$

ㅁ $6>0$, so $\lfloor 28 / 6\rfloor=4 \leftarrow$ floor

ㅁ $28=4(6)+4=24+4 \leftarrow$ remainder

4.4.6 Definition

ㅁ $-30(\bmod 9)=4$

ㅁ $-30 / 9=-3.33$
ㅁ $9>0$, so $\lfloor-30 / 9\rfloor=-4 \leftarrow$ floor

ㅁ $-30=-4(9)+6=-36+6 \leftarrow$ remainder

4.4.6 Definition

ㅁ $29(\bmod 6)=5$

ㅁ $29 / 6=4.83$

ㅁ $6>0$, so $\lfloor 29 / 6\rfloor=4 \leftarrow$ floor

ㅁ $29=4(6)+5=24+5 \leftarrow$ remainder

Topics covered

- The Division Algorithm

- The division algorithm
- Representing natural numbers in various bases.
\square Divisibility and the Euclidean algorithm.
- gcd
- Lcm
\square Prime numbers
\square Congruence

Reference

\square "Discrete Mathematics with Graph Theory", Third Edition, E. Goodaire and Michael Parmenter, Pearson Prentice Hall, 2006. pp 98-146.

