Foundations of Discrete Mathematics

Chapter 4

By Dr. Dalia M. Gil, Ph.D.

The Binary Relation ≤

- The binary relation \leq is
- $\square Reflexive: a \le a for all a \in R,$
- □ Antisymmetric: if $a \le b$ and $b \le a$, $b \in \mathbb{R}$, then a = b, and
- $\Box \text{ Transitive: if } a \leq b \text{ and } b \leq c,$

for a, b, $c \in R$, then $a \leq c$.

Properties of + and .

Let a, b, and c be real numbers.

- (closure) a + b and ab are both real numbers.
- 2. (commutative) a + b = b + a and ab = ba.
- 3. (associativity) (a + b) + c =a + (b + c) and (ab)c = a(bc).

Properties of + and .

4. (identities) a + 0 = a and $a \cdot 1 = a$.

- 5. (distributivity) a(b + c) = ab + acand (a + b)c = ac + bc.
- 6. (additive inverse) a + (-a) = 0.

7. (multiplicative inverse) a(1/a) = 1if $a \neq 0$.

Properties of + and .

8. $a \le b$ implies $a + c \le b + c$

9. $a \le b$ and $c \ge 0$ implies $ac \le bc$

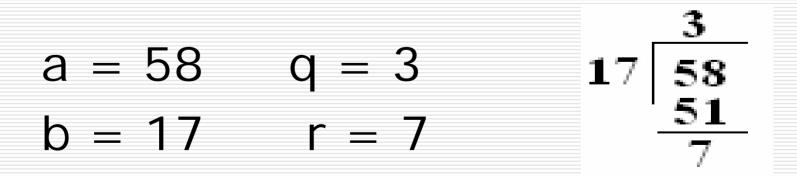
10. $a \le b$ and $c \le 0$ implies $ac \ge bc$

Well-Ordering Principle

Any nonempty set of natural numbers has a smallest element.

4.1.3 Theorem

Given natural numbers a and b, there are unique nonnegative integers q and r, with $0 \le r < b$, such that a = qb + r.



4.1.4 Definition

- If a and b are natural numbers and
 - a = qb + r for nonnegative integers q and r with $0 \le r < b$,
- □ q ← the quotient,
 r ← reminder when a is divided by b.

$$17 \boxed{\begin{array}{c} 3\\ 58\\ \underline{51}\\ 7 \end{array}}$$
 the

- the quotient q = 3
- the remainder r = 7

 \Box Let a, b \in Z, b \neq 0. Then there exist

unique integers q and r, with $0 \le r < |b|$, such that a = qb + r

а	b	q	r
-58	-17	4	7

$$q = \left\lceil -58/-17 \right\rceil = \left\lceil 3.41 \right\rceil = 4$$

a < 0 and b < 0 $\land q$ = The ceiling = 4

 \Box Let a, b \in Z, b \neq 0. Then there exist

unique integers q and r, with $0 \le r < |b|$, such that a = qb + r

а	b	q	r
-58	17	-4	10

 $q = \lfloor -58/17 \rfloor = \lfloor -3.41... \rfloor = -4$

a < 0 and b > 0

$$\uparrow$$
 q = The floor = -4

 \Box Let a, b \in Z, b \neq 0. Then there exist

unique integers q and r, with $0 \le r < |b|$, such that a = qb + r

а	b	q	r
58	-17	-3	7

 $q = \lfloor -58/17 \rfloor = \lceil -3.41 \rceil = -3$

a > 0 and b < 0 $\land q = The ceiling = -3$

 \Box Let a, b \in Z, b \neq 0. Then there exist

unique integers q and r, with $0 \le r < |b|$, such that a = qb + r

a	b	q	r
58	17	3	10

 $q = \lfloor -58/17 \rfloor = \lfloor 3.4 \rfloor = 3$

a > 0 and b > 0

 \uparrow q = The floor = 3

4.1.6 Proposition

Let a, $b \in Z$, with $0 \le r < |b|$ then

\Box q = $\lfloor a/b \rfloor$ if b > 0 \leftarrow the floor

\Box q = $\lceil a/b \rceil$ if b < 0 \leftarrow the ceiling

Let a = -1027 and b = 38

$b > 0 \rightarrow \lfloor a/b \rfloor = \lfloor -1027/38 \rfloor$

$= \lfloor -27.026... \rfloor = -28 = q$

$$a = bq + r \rightarrow r = a - bq$$

$$r = -1027 - (38)(-28)$$
$$= -1027 + 1064$$
$$= 37$$

Number System

 Number system is a convention for representing quantities.

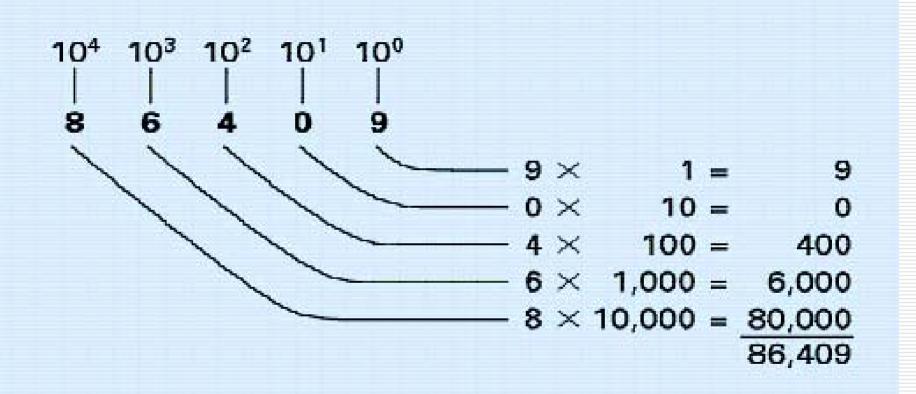
There are several number systems.

Number Systems

- Decimal number System.
- Binary Number System.
- Octal Number System.
- Hexadecimal Number System.

Decimal Number System

The decimal number representation (10 digits from 0 to 9).



 $(8x10^4) + (6x10^3) + (4x10^2) + (0x10^1) + (9x10^0) = 86,409$

(positional notation)

Decimal, Octal, Hexadecimal and Binary Equivalents

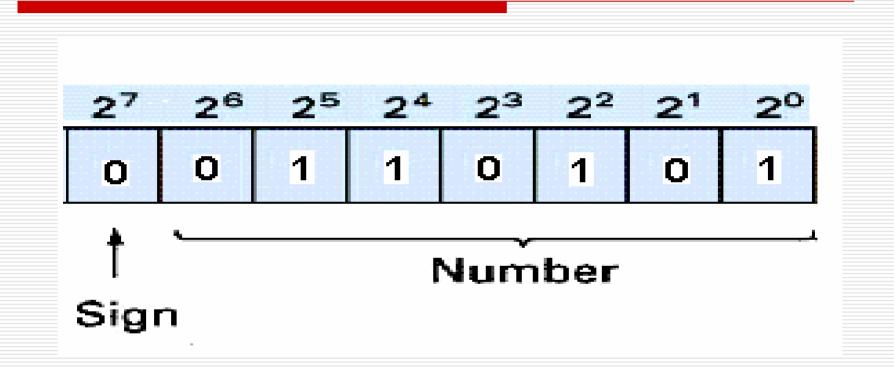
Decimal	Octal	Hexadecimal	Binary
0	0 ₈	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011
4	4	4	0100
5	5	5	0101
6	6	6	0110
7	7	7	0111

Decimal, Octal, Hexadecimal and Binary Equivalents

Decimal	Octal	Hexadecimal	Binary
8	10	8	1000
9	11	9	1001
10	12	10 (A)	1010
11	13	11 (B)	1011
12	14	12 (C)	1100
13	15	13 (D)	1101
14	16	14 (E)	1110
15	17	15 (F)	1111

Binary Number System

10101101 ← binary number representation of the decimal 173



 $(1x2^7) + (1x2^5) + (1x2^2) + (1x2^1) + (1x2^0) = 173$

(positional notation)

Converting a Binary Number to Decimal

110101 ← binary number representation

$1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$

1 x 32 + 1 x 16 + 0 x 8 + 1 x 4 + 0 x 2 + 1 x 1

32 + 16 + 0 + 4 + 0 + 1 = 53

Converting an Octal Number to Binary

Octal	Binary		
08	\rightarrow	000 ₂	
1 ₈	\rightarrow	001 ₂	$653_8 \rightarrow 110\ 101\ 011_2$
2 ₈	\rightarrow	010 ₂	
3 ₈	\rightarrow	011 ₂	Octal Binary
4 ₈	\rightarrow	100 ₂	$6_8 \rightarrow 110_2$
5 ₈	\rightarrow	101 ₂	
6 ₈	\rightarrow	110 ₂	$5_8 \rightarrow 101_2$
7 ₈	\rightarrow	111 ₂	$3_8 \rightarrow 011_2$
18		1112	

Hexadecimal Number System

Dec.	Hexadecimal	Binary	HexaDec	Binary
5 6	$\begin{array}{ccc} 5_{16} & \rightarrow \\ 6_{16} & \rightarrow \end{array}$	0101 ₂ 0110 ₂	$F \rightarrow 1$	1112
7	$7_{16} \rightarrow$	0111 ₂		10102
8 9	$\begin{array}{ccc} 8_{16} & \rightarrow \\ 9_{16} & \rightarrow \end{array}$	1000 ₂ 1001 ₂		1101,
10	10_{16} (A) \rightarrow	1010 ₂		0101,
11 12	$\begin{array}{ccc} 11_{16} & \rightarrow \\ 12_{16} & \rightarrow \end{array}$	1011 ₂ 1100 ₂		
13	13 ₁₆ (D) →	1101 ₂	=AD5 ₁₆ =	
14 15	$\begin{array}{ccc} 14_{16} & \rightarrow \\ 15_{16} (F) & \rightarrow \end{array}$	1110 ₂ 1111 ₂	1111 1010 1101	0101
		4		

Converting an Octal Number to Decimal

7614 ← octal number

$7 \times 8^3 + 6 \times 8^2 + 1 \times 8^1 + 4 \times 8^0$

7 x 512 + 6 x 64 + 1 x 8 + 4 x 1

3584+ 384 + 8 + 4 = <u>3980</u> ← decimal number

Converting Hexadecimal Number to Decimal

AD3B ← hexadecimal number

 $A \times 16^3 + D \times 16^2 + 3 \times 16^1 + B \times 16^0$

 $10 \times 16^3 + 13 \times 16^2 + 3 \times 16^1 + 11 \times 16^0$

10 x 4096 + 13 x 256 + 3 x 16 + 11 x 1

40960+ 3328 + 48 + 11 = <u>44347</u> ← decimal number

Converting Decimal Number to Binary

57 ← decimal number

1. Write the positional values from right to left until we reach a column whose positional value is less than the decimal number.

 Position value as a power
 2⁵
 2⁴
 2³
 2²
 2¹
 2⁰

 Position value
 32
 16
 8
 4
 2
 1

32 < 57

Converting Decimal Number to Binary

Position value as a power 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

Position value 32 16 8 4 2 1 32 < 57

2. Divide this positional value 32 into 57. The result 1 is written in the column with value 32.

 Position value
 32 16 8 4 2 1

 1
 1

Converting Decimal Number to Binary (cont.)

3. The remainder 25. This value is greater than the following position value 16.

4. Divide this positional value 16 into 25. The result 1 is written in the column with value 16.

 Position value
 32
 16
 8
 4
 2
 1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Converting Decimal Number to Binary (cont.)

5. The remainder 9. This value is greater than the following position value 8.

Divide this positional value 8 into 9. The result
 1 is written in the column with value 8.

 Position value
 32
 16
 8
 4
 2
 1

 1
 1
 1
 1
 1
 1
 1
 1

Converting Decimal Number to Binary (cont.)

7. The remainder 1. This value is equal to the position value 1.

8. The result 1 is written in the column with value 1, and zero in the columns 2 and 4

Position value32168421111001

Converting Decimal Number to Binary

Verify the results

1 1 1 0 0 1₂

$1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$

1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 1 x 1

32 + 16 + 8 + 0 + 1 = 57

Converting Decimal Number to Octal

103 ← decimal number

1. Write the positional values from right to left until we reach a column whose positional value is less than the decimal number.

Position value as a power 8³ 8² 8¹ 8⁰

Position value 512 64 8 1 64 < 103

Converting Decimal Number to Octal

Position value as a power	8 ³	8 ²	8 ¹	8 0
Position value	512	64	8	1
64 < 103				

2. Divide this positional value 64 into 103. The result 1 is written in the column with value 64.

1

Position value 64 8 1

Converting Decimal Number to Octal (cont.)

3. The remainder 39. This value is greater than the following position value 8.

4. Divide this positional value 8 into 39. The result 4 is written in the column with value 8.

Position value 64 8 1 1 4 Converting Decimal Number to Octal (cont.)

5. The remainder 7. This value is greater than the following position value 1.

6. Divide this positional value 1 into 7. The result 7 is written in the column with value 1.

 Position value
 64
 8
 1

 1
 4
 7

Converting Decimal Number to Octal

Verify the results

147₈

$1 \times 8^2 + 4 \times 8^1 + 7 \times 8^0$

1 x 64 + 4 x 8 + 7 x 1

64 + 32 + 7 = 103

Converting Decimal Number to Hexadecimal

375 ← decimal number

1. Write the positional values from right to left until we reach a column whose positional value is less than the decimal number.

 Position value as a power
 16^2 16^1 16^0

 Position value
 256
 256 16 1

 256 < 375</th>
 256 256 256 256 256

Converting Decimal Number to Hexadecimal

Position value as a power	16 ²	16 ¹	16 ⁰
Position value	256	16	1
256 < 375			

2. Divide this positional value 256 into 375. The result 1 is written in the column with value 256.

Position value 256 16 1

Converting Decimal Number to Hexadecimal (cont.)

3. The remainder 119. This value is greater than the following position value 16.

4. Divide this positional value 16 into 119. The result 7 is written in the column with value 16.

Position value 256 16 1 1 7 Converting Decimal Number to Hexadecimal (cont.)

5. The remainder 7. This value is greater than the following position value 1.

6. Divide this positional value 1 into 7. The result 7 is written in the column with value 1.

 Position value
 256
 16
 1

 1
 7
 7

Converting Decimal Number to Hexadecimal

Verify the results

177₁₆

$1 \times 16^2 + 7 \times 16^1 + 7 \times 16^0$

1 x 256 + 7 x 16 + 7 x 1

256 + 112 + 7 = 375

 How computers represent negative numbers using two's complement notation.

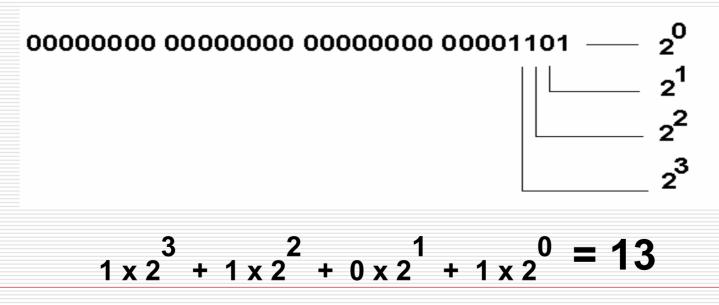
 How the two's complement of a binary number is formed.

Why it represents the negative value of the given binary number.

- Consider a machine with 32-bit integers.
- Suppose the integer value 13.

- Consider a machine with 32-bit integers.
 Suppose the integer value 13.
 - The 32-bit representation of value is

•



To form the negative of value we first form its one's complement--ones become zeros and zeros become ones.

value :

0000000 0000000 0000000 00001101

one's complement :

11111111 1111111 11111111 11110010

To form the two's complement add one to the one's complement

one's complement :

11111111 1111111 11111111 11110010

two's complement :

11111111 1111111 11111111 11110011

• This value represents -13

Verify the results

two's complement (value –13):

0000000 0000000 0000000 00001101

The addition between both amounts is zero

0000000 0000000 0000000 0000000

Divisibility

- Given integers *a* and *b* with *b* ≠ 0, we say that *b* is a divisor or a factor of *a* and that *a* is divisible by *b* if and only if *a* = *qb* for some integer *q*.
- *b* | *a* ← *a* is divisible by *b* ("*b* divides *a*.")
 - $1|n \forall n \text{ integer}, n \neq 0$
 - $n|0 \forall n integer, n \neq 0$

4.2.2 Proposition

The binary relation R on N defined by

 (a, b) ∈ R if and only if a | b is a partial order.

- 3 is a divisor of 18 or 3 18
- -7 is a divisor of 35 or -7 35

Note: a | b "a divides b" or "b is divisible by a."

The binary relation R on N defined by $(a, b) \in R$ if and only if $a \mid b$ is a partial order.

Reflexive: For any $a \in N$, $a \mid a$ because

a = 1 . a

Note: a|b "a divides b" or "b is divisible by a."

- Antisymmetric: Suppose a, b ∈ N are such that a | b and b | a.
- Then b = q₁a for some natural number q₁ and
- \square a = q₂b for some natural number q₂.

Thus,
$$a = q_2(q_1 a) = (q_1 q_2)a$$
.

- **D** Thus, $a = q_2(q_1a) = (q_1q_2)a$.
- \Box Since a \neq 0, q₁q₂ = 1, and
- \square since q_1 , and q_2 are natural numbers,

 \square we must have $q_1 = q_2 = 1$; thus, a = b.

□ Transitive: if a, b, $c \in N$ are such that a | b and b | c,

 \Box then b = q₁a and c = q₂b

for some natural numbers q_1 and q_2 .

□ Thus $c = q_2 b = q_2(q_1 a) = (q_1 q_2)a$, with $q_1 q_2$ a natural number. So $a \mid c$

4.2.3 Proposition

Suppose a, b, c ∈ N are such that c | a and c | b, then c |(xa + yb) for any integers x and y.

- \Box Since c | a , a = q₁c for some integer q₁
- **Since** $c \mid b$, $b = q_2 c$ for some integer q_2

$$\square \text{ Thus, } xa + yb = xq_1c + yq_2c$$
$$= (q_1x + q_2y)c$$

 \Box Since $q_1x + q_2y$ is an integer,

c | (xa + xb), as required.

The Greatest Common Divisor (gcd)

- Let a and b be integers not both of which are 0.
- An integer g is the gcd of a and b if and only if g is <u>the largest common divisor</u> of a and b; that is, if and only if
- 1. g | a, g | b and
- If c is any integer such that c | a and c | b, then c ≤ g.

The Greatest Common Divisor (gcd)

□ The gcd of 15 and 6 is 3. \Box gcd(-24, 18) = 6 \Box gcd(756, 210) = 42 \Box gcd(-756, 210) = 42 \Box gcd(-756, -210) = 42

4.2.3 Lemma

- If a = qb + r for integers a, b, q, and r, then gcd(a, b) = gcd(b, r).
- $\Box \quad \text{If } a = b = 0 \text{ then } a = qb + r, \text{ then } r = 0$

$\Box \quad \text{If } b = r = 0 \text{ then } a = 0$

In either case, the result is true since neither gcd(a,b) nor gcd(b,r) is defined.

Euclidean Algorithm

- □ Let a and b be natural numbers with b < a. To find the gcd of a and b, write $a = q_1b + 1$ with $0 \le r_1 < b$
- If $r_1 \neq 0$ write $b = q_2r_1 + r_2$, with $0 \leq r_2 < r_1$ If $r_2 \neq 0$ write $r_1 = q_3r_2 + r_3$, with $0 \leq r_3 < r_2$ If $r_3 \neq 0$ write $r_2 = q_4r_3 + r_4$, with $0 \leq r_4 < r_3$

Continue the process until some remainder $r_{k+1} = 0$. Then the gcd of a and b is r_k , the **last nonzero remainder**.

Example of Euclidean Algorithm

$$\begin{array}{c|c} 287 = 3 \cdot 91 + 14 \\ 91 & 287 \\ 273 & 14 \\ \hline 273 & 14 \\ \hline 273 & 14 \\ \hline 14 & 91 \\ 91 = 6 \cdot 14 + 7 \\ \hline 14 & \frac{6}{91} \\ \frac{84}{7} \\ 7 & \frac{2}{7} \\ 14 \\ 14 \\ 0 \\ \hline 200 \\ gcd(287,91) = gcd(14,7) = \end{array}$$

Example of Euclidean Algorithm

□ Find the gcd of 287 and 91.

□ 287 = 3 . 91 + 14

□ 91 = 6 . 14 + 7

The last nonzero remainder is 7, so this is the gcd(287,91).

 \Box 14 = 2 . 7 + 0

gcd(287,91) = gcd(14,7) = 7

- If a and b are nonzero integers, *l* is the least common multiple (lcm) of a and b and write *l* = lcm(a, b) if and only if *l* is positive integer satisfying
 - 1. a | *e*, b | *e* and,
 - 2. If m is any positive integer such that $a \mid m$ and $b \mid m$, then $\ell \leq m$.

- \Box The lcm of 4 and 14 is 28.
- \Box Icm(-6, 21) = 42

□ The lcm is always positive (by definition).

gcd(a, b)Imc(a, b) = |ab|

gcd(a, b). Imc(a, b) = |ab| \Box gcd(6, 21). Imc(6, 21) = |6.21|

3. lcm(6, 21) = 6(21)

$\Box \ \text{lcm}(6, 21) = 6(21) / 3$

$\square \text{ Icm}(6, 21) = 6(21) / 3 = 42$

gcd(a, b). Imc(a, b) = |ab|

gcd(630, -196) = 14

14 . lcm(630, -196) = 630(196)lcm(630, -196) = 123480 / 14lcm(630, -196) = 8820

Prime Numbers

A natural number $p \ge 2$ is called prime if and only if natural numbers that divide p are p and 1.

A natural number n > 1 that is no prime is called composite.

Thus, n > 1 is composite if n = ab, where a and b are natural numbers with 1 < a, b < n.

Prime Numbers

Given any natural number n > 1, there exists a prime p such that p | n.

□ There are infinitely many primes.

□ If a natural number n > 1 is not prime, then n is divisible by some prime number $p \le \sqrt{n}$.

□ List all integers from 2 to n.

 Circle 2 and then cross out all multiples of 2 in the list.

Circle 3, the first number not yet crossed out or circled, and cross out all multiples of 3.

- Circle 5, the first number not yet crossed out or circled, and cross out all multiples of 5.
- Circle 7 and then cross out all multiples of 7 in the list.
- At the general stage, circle the first number that is neither crossed out nor circled and cross out all its multiples.

- Continue until all numbers less than or equal to √n have been circled or crossed out.
- When the process is finished, those integers not crossed out are the primes not exceeding n.

2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21
22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41
42	43	44	45	46	47	48	49	50	51
52	53	54	55	56	57	58	59	60	61
62	63	64	65	66	67	68	69	70	71
72	73	74	75	76	77	78	79	80	81
82	83	84	85	86	87	88	89	90	91
92	93	94	95	96	97	98	99	100	

List all integers from 2 to n.

2	3	Å	5	6	7	8	9	1 0	11
J2	13	14	15	.16	17	18	19	20	21
22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	,38	39	4 0	41
42	43	44	45	46	4 7	48	49	50	51
5 2	53	54	55	56	57	58	59	<u>60</u>	61
62	63	64	65	<u>66</u>	67	68	69	70	71
72	73	74	75	76	77	78	79	80	81
8 2	83	8 4	85	86	87	88	89	90	91
92	93	94	95	96	97	98	99	190	

Circle 2 and then cross out all multiples of 2 in the list.

2	3	Å	5	6	7	8	Ņ	1.O	11
1/2	13	14	¥5	.16	17	<u>1</u> 8	19	20	<i>2</i> 1
<u>22</u>	23	24	<u>1</u> 5	26	27	28	29	30	31
32	33	34	3 /\$	36	37	,38	,39	4 0	41
42´	43	44	<i>4</i> 3	46	47	48	49	50	<i>5</i> 1
52	53	5⁄4	5 /5	56	.57	58	59	<u>60</u>	61
62	<i>6</i> 3	64	65	<u>66</u>	67	68	<i>,</i> 6 9	70	71
7 2	73	7,4	<i>t</i> 15	76	77	78	79	80	81
8 2	83	8 4	85	86	.87	88	89	9 0	91
9Ź	<i>)</i> 93	94	9/T	9,6	97	98	øø	190	

Circle 3, the first number not yet crossed out or circled, and cross out all multiples of 3.

2	3	Å	5	ø	7	8	Ņ	10	11
1/2	13	14	¥\$	16	17	18	19	20	<i>21</i>
<u>22</u>	23	24	<u>1</u> 5	26	27	28	29	30	31
32	33	34	<i>\$</i> /\$	36	37	38	,39	40	41
42´	43	44	4 3	46	4 7	48	49	50	<i>5</i> 1
52	53	5⁄4	<i>5</i> 55	56	.57	58	59	<u>60</u>	61
62	<i>6</i> 3	<u>6</u> 4	,6 ,5	66	67	68	<i>,</i> 6 9	70	71
72	73	74	<i>1</i> 15	76	77	78	79	80	81
8 2	83	8 4	85	86	.87	88	89	90	91
92	<i>9</i> 3	94	9⁄S	9,6	97	98	99	190	

Circle 5, the first number not yet crossed out or circled, and cross out all multiples of 5.

2	3	Å	5	ø	T	8	Ņ	1.0	11
J2	13	14	¥5	16	17	<u>1</u> 8	19	20	2Í
<u>22</u>	23	24	<u>1</u> 5	26	27	28	29	30	31
32	33	34	<i>\$</i> / 5	36	37	38	<i>3</i> 9	40	41
42´	43	44	,43	4 6	47	48	,1 9	50	<i>5</i> 1
52	53	5⁄4	<i>5</i> 55	56	.57	58	59	<u>60</u>	61
62	<i>6</i> 3	<u>6</u> 4	\$ 5	66	67	68	<i>,</i> 6 9	70	71
72	73	7,4	<i>1</i> 15	76	ht f	78	79	80	8 1
8 2	83	8 4	85	86	.87	88	89	90	<i>1</i> 9/1
92	<i>9</i> 3	94	9⁄5	96	97	98	9 9	100	

Circle 7, the first number not yet crossed out or circled, and cross out all multiples of 7.

\bigcirc		X	S	K	T	Q	á	16	11	
Ø	I	4	J	ø	\bigcirc	,o	17	Ļ0	11	
12	13	14	¥\$	16	17	1 8	19	20	<i>2</i> A	
<u>2</u> Ż	23	24	1 5	26	27	28	29	30	31	The primes loss
32	33	34	3 / 3	36	37	38	<i>,</i> 3 9	40	41	The primes less than 100 are
42	43	44	A3	46	4 7	48	49	50	<i>.</i> 51	those not crossed
52	53	5⁄4	,\$\$	56	.57	58	59	60	61	out.
62	<i>6</i> 3	<u>6</u> 4	\$ \$	<u>66</u>	67	68	<i>,</i> 6 9	70	71	
7 2	73	74	<i>1</i> /5	76	ht.	78	79	80	81	
82	83	8 4	85	86	.87	88	89	<u>90</u>	<i>1</i> 91	
92	<i>9</i> 3	94	9Z	9,6	97	98	99	100	í	

Q	2)	3	4	3	6	Ō	8	9	10	<u>11</u>	
	12	<u>13</u>	14	15	16	<u>17</u>	18	<u>19</u>	20	21	
2	22	<u>23</u>	24	25	26	27	28	<u>29</u>	30	<u>31</u>	The primes less
	32	33	34	35	36	<u>37</u>	38	39	40	<u>41</u>	than 100 are
4	42	<u>43</u>	44	45	46	<u>47</u>	48	49	50	51	those not crossed
4	52	<u>53</u>	54	55	56	57	58	<u>59</u>	60	<u>61</u>	out.
(62	63	64	65	66	67	68	69	70	<u>71</u>	
	72	73	74	75	76	77	78	<u>79</u>	80	81	
8	82	<u>83</u>	84	85	86	87	88	<u>89</u>	90	91	
9	92	93	94	95	96	<u>97</u>	98	99	100		

 \Box Let n > 1 be a fixed natural number.

- Given integers a and b, a is congruent to be modulo n (or a is congruent to b mod n for short) $a \equiv b \pmod{n}$,
- $\Box \quad \text{If and only if } n \mid (a b).$

n is called the modulus of the congruence

3 = 17 (mod 7) because 3 – 17 = -14 is divisible by 7;

- □ -2 = 13 (mod 3), because -2 13 = -15 is divisible by 3;
- General Ge
- -4 = -49 (mod 9), because -4 + 49 = 45 is divisible by 9;

Congruence is a binary relation on Z

- □ Reflexive: $a \equiv a \pmod{n}$ for any integer a. Because a - a = 0 is divisible by n.
- Symmetric: if a = b (mod n), then b = a (mod n). Because if n | (a – b) then n | (b – a)
- Transitive: if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. Because if $n \mid (a - b)$ then $n \mid (b - c)$

The Congruence Class

The congruence class mod n of an integer a is the set of all integers to which a is congruent mod n. It is denoted a. Thus

$$a = \{ b \in Z \mid a \equiv b \pmod{n} \}$$

<u>Note</u>: Because congruence is symmetric is the same $a \equiv b \pmod{n}$ or $b \equiv a \pmod{n}$

4.4.3 Proposition

- Let a, b, and n be integers with n > 1. Then the following statements are equivalent.
- $\begin{array}{c|c} n & | (a b) \\ a \equiv b \pmod{n} \\ a \equiv b \pmod{n} \\ a \in \overline{b} \\ b \in \overline{a} \\ b \in \overline{a} \\ a = \overline{b} \end{array}$

4.4.4 Corollary

 \square For integers a, b, and n with n > 1,

$a \equiv b \pmod{n}$ if and only if a = b

- $\Box \quad a \in \overline{b}$ $\Box \quad b \in \overline{a}$
- $\Box \quad \overline{a} = \overline{b}$

□ Let n = 5. Since -8 - 17 = -25 is divisible by 5, then $-8 \equiv 17 \pmod{5}$.

□ -8 belongs to the congruence class of 17 (-8 \in 17), and 17 \in -8. So -8 = 17

Find all congruence classes of integers mod 5.

$\overline{0} = \{b \in Z \mid b \equiv 0 \pmod{5}\}\$ = $\{b \in Z \mid 5 \mid (b - 0)\}\$ = $\{b \in Z \mid b = 5k \text{ for some integer }k\}$

Congruence classes of integers mod 5.

 $\overline{1} = \{b \in Z \mid b \equiv 1 \pmod{5}\}\$ = $\{b \in Z \mid 5 \mid (b - 1)\}\$ = $\{b \in Z \mid b - 1 = 5k \text{ for some integer } k\}\$ = $\{b \in Z \mid b = 5k + 1 \text{ for some integer } k\}\$

□ Congruence classes of integers mod 5.

- $\overline{2} = \{b \in Z \mid b = 5k + 2 \text{ for some } k \in Z\}$ = 5Z + 2
- $\overline{3} = \{b \in Z \mid b = 5k + 3 \text{ for some } k \in Z\}$ = 5Z + 3
- $\overline{4} = \{b \in Z \mid b = 5k + 4 \text{ for some } k \in Z\}$ = 5Z + 4

4.4.5 Proposition

- Any integer is congruent mod to its remainder upon division by n.
- There are n congruence classes of integers mod n corresponding to each of the n possible remainders.
 - $\overline{0} = nZ$

$$\overline{n}$$
-1 = nZ + (n – 1)

- $\overline{1} = nZ + 1$
- $\bar{2} = nZ + 2$

If n > 1 is a natural number and a is any integer, a (mod n) is the remainder r.

 $0 \le r < n$, obtained when <u>a is divided by n</u>.

- □ -17 (mod 5) = 3
- \square 28 (mod 6) = 4
- \Box -30 (mod 9) = 6
- □ The integer 29 is 5 mod 6

\Box -17 (mod 5) = 3

\Box 5 > 0, so $\lfloor -17/5 \rfloor = -4 \leftarrow$ floor

 \Box -17 = -4(5) + 3 = -20 + 3 \leftarrow remainder

$$\square$$
 28/6 = 4.66

\Box 6 > 0, so $\lfloor 28/6 \rfloor = 4 \leftarrow$ floor

\square 28 = 4(6) + 4 = 24 + 4 \leftarrow remainder

$$-30/9 = -3.33$$

\square 9 > 0, so $\lfloor -30/9 \rfloor = -4 \leftarrow$ floor

 \Box -30 = -4(9) + 6 = -36 + 6 \leftarrow remainder

□ 29 (mod 6) = 5

$$\Box$$
 29/6 = 4.83

\Box 6 > 0, so $\lfloor 29/6 \rfloor = 4 \leftarrow$ floor

\Box 29 = 4(6) + 5 = 24 + 5 \leftarrow remainder

Topics covered

The Division Algorithm

- The division algorithm
- Representing natural numbers in various bases.
- Divisibility and the Euclidean algorithm.
 - gcd
 - Lcm
- Prime numbers
- Congruence

Reference

 <u>Discrete Mathematics with</u> <u>Graph Theory</u>", Third Edition,
 E. Goodaire and Michael Parmenter, Pearson Prentice Hall, 2006. pp 98-146.