Foundations of Discrete Mathematics

Chapters 5

By Dr. Dalia M. Gil, Ph.D.

Mathematical Induction

\square Mathematical induction is one of the most basic methods of proof.
\square It is applied in every area of mathematics.

Mathematical Induction

\square Mathematical induction is used to prove propositions of the form $\forall \mathrm{n}$ P(n)
\square where the universe of discourse is the set of positive integers.

Mathematical Induction

\square It is a method of mathematical proof typically used to establish that
\square a given statement is true of all natural numbers, or
\square otherwise is true of all members of an infinite sequence.

Mathematical induction can be analized

 as the domino effect

1. The first domino will fall.
2. Whenever a domino falls, its next neighbor will also fall.
Then you can conclude that all dominos will fall.

Steps of Mathematical Induction

1. Basis Step: showing that the statement holds when $\mathrm{n}=0$ or any initial value.
2. Inductive step: showing that if the statement holds for $n=m$, then the same statement also holds for $n=m+1$.
\square The proposition following the word "if" is called the induction hypothesis.

Example: Mathematical Induction

\square Suppose we wish to prove the statement:

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

ㅁ for all natural numbers n.

Example: Mathematical Induction

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

\square This is a simple formula for the sum of the natural numbers up to the number n.

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

\square Check if it is true for $n=1$.
\square The sum of the first 1 natural numbers is 1 , and

$$
1=\frac{1(1+1)}{2}
$$

\square So the statement is true for $n=1$.
\square The statement is defined as $P(n)$, and $P(1)$ holds.

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

\square Now we have to show that if the statement holds when $n=m$, then
\square it also holds when $n=m+1$.
\square Assume the statement is true for $n=m$

$$
1+2+\cdots+m=\frac{m(m+1)}{2}
$$

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

$$
1+2+\cdots+m=\frac{m(m+1)}{2}
$$

\square Under this assumption, it must be shown that $P(k+1)$ is true, namely, that

$$
1+2+\cdots+m+(m+1)=\frac{(m+1)((m+1)+1))}{2}=\frac{(m+1)(m+2)}{2}
$$

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

\square Adding $m+1$ to both sides gives

$$
\begin{aligned}
1+2+\cdots+m+(m+1) & =\frac{m(m+1)}{2}+(m+1) \\
& =\frac{m(m+1)}{2}+\frac{2(m+1)}{2} \\
& =\frac{(m+2)(m+1)}{2}
\end{aligned}
$$

\square This last equation shows that $P(m+1)$ is true.

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

\square Symbolic \rightarrow ally, we have shown that:

$$
P(m) \Rightarrow P(m+1)
$$

\square The inductive steps are expressed as the following rule of inference
$[P(1) \wedge \forall m(P(m) \rightarrow P(m+1))] \rightarrow \forall n P(n)$

Some Common Proof Techniques

Direct proof: where the conclusion is established by logically combining the axioms, definitions and earlier theorems.

Proof by induction: where a base case is proved, and an induction rule used to prove an (often infinite) series of other cases.

Some Common Proof Techniques

Proof by contradiction (also known as reductio ad absurdum): where it is shown that if some statement were false, a logical contradiction occurs, hence the statement must be true.

Some Common Proof Techniques

Proof by construction: constructing a concrete example with a property to show that something having that property exists.

Proof by exhaustion: where the conclusion is established by dividing it into a finite number of cases and proving each one separately.

Some Common Proof Techniques

- A combinatorial proof establishes the equivalence of different expressions by showing that they count the same object in different ways.
- Usually a one-to-one correspondence is used to show that the two interpretations give the same result.

Some Common Proof Techniques

- A statement which is thought to be true but has not been proven yet is known as a conjecture.
- In most axiom systems, there are statements which can neither be proven nor disproven.

The Principle of Mathematical Induction

- p is true for some particular integer n_{0}.
- If $k \geq n_{0}$ is an integer and p is true for k, then P is true for the next integer $k+1$ (Induction hypothesis).
- Then \boldsymbol{P} is true for all integers $\mathrm{n} \geq \mathrm{n}_{0}$.

The Principle of Mathematical Induction

- A proof by mathematical induction that $p(n)$ is true for every positive integer n consists of two steps:
- Basis step: The proposition $\mathcal{P}(1)$ is shown to be true.
- Inductive step: The implication

$$
\mathcal{P}(\mathrm{k}) \rightarrow \mathcal{P}(\mathrm{k}+1)
$$

is shown to be true for every positive integer k.

Example 1 using The Principle of Mathematical Induction

- Prove that for any integer $n \geq 1$ the sum of the odd integers from 1 to $2 n-1$ is n^{2}.
- The sum in question is often written

$$
1+3+5+\ldots+(2 n-1)
$$

1
 Odd numbers

A formula of the general term

Example 1 using The Principle of Mathematical Induction

$(2 n-1) \leftarrow$ Evaluating the general term, we can obtain all numbers of this serie

- $n=1$

$$
1=(2(1)-1)=2-1
$$

- $n=2$

$$
3=(2(2)-1)=4-1
$$

Example 1 using The Principle of Mathematical Induction

$$
1+3+5+\ldots+(2 n-1)=\sum_{i=1}(2 i-1)
$$

- We can prove that, for all integers $n \geq 1$,

$$
1+3+5+\ldots+(2 n-1)=n^{2}
$$

$$
\sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Example 1 using The Principle of Mathematical Induction

Step 1, $\mathrm{n}_{0}=1$
When $\mathrm{n}=1$,

$$
1+3+5+\ldots+(2 n-1) \text { means }
$$

"the sum of the odd integers from 1 to
2(1) $-1=1$."

Example 1 using The Principle of Mathematical Induction

Step 2, Suppose k is an integer, $k \geq 1$, and the statement is true for $n=k$
suppose

$$
1+3+5+\ldots+(2 k-1)=k^{2}
$$

\uparrow Induction Hypothesis

Example 1 using The Principle of Mathematical Induction

Now, show that the statement is true for the next integer, $n=k+1$

$$
\begin{aligned}
& 1+3+5+\ldots+(2(k+1)-1)=(k+1)^{2} \\
& \text { If }(2(k+1)-1)=2 k+1, \text { then } \\
& 1+3+5+\ldots+(2 k+1)=(k+1)^{2}
\end{aligned}
$$

Example 1 using The Principle of Mathematical Induction

- The sum on the left is the sum of the odd integers from 1 to $2 k+1$.
- This is the sum of the odd integers from 1 to $2 k-1$, plus the next odd integer, 2k + 1

$$
\begin{aligned}
1 & +3+5+\ldots+(2 k+1) \\
& =[1+3+5+\ldots+(2 k-1)]+(2 k+1)
\end{aligned}
$$

Example 1 using The Principle of Mathematical Induction

- By induction hypothesis, we know that

$$
\begin{aligned}
1 & +3+5+\ldots+(2 k+1) \\
& =[1+3+5+\ldots+(2 k-1)]+(2 k+1) \\
& =k^{2}+(2 k+1)=(k+1)^{2}
\end{aligned}
$$

Example 1 using The Principle of Mathematical Induction

This is the result wanted

$$
1+3+5+\ldots+(2 k-1)+(2 k+1)=\underline{k}^{2}+(2 k+1)
$$

- Conclusion: By the Principle of Mathematical induction
$1+3+5+\ldots+(2 n-1)=n^{2}$, is true for all $n \geq 1$

Example 2 using The Principle of Mathematical Induction

- Prove that for any integer $n \geq 1$,

$$
\begin{aligned}
1^{2}+2^{2}+3^{2} & +\ldots+n^{2} \\
& =(n(n+1)(2 n+1)) / 6
\end{aligned}
$$

Example 2 using The Principle of Mathematical Induction

Solution:

- Step $1, \mathrm{n}=1$
the sum of the integers from 1^{2} to 1^{2} is 1^{2}.

$$
(1(1+1)(2.1+1)) / 6=6 / 6=1
$$

- So the statement is true for $\mathrm{n}=1$.

Example 2 using The Principle of Mathematical Induction

- Step 2 , suppose $k \geq 1$, and the statement is true for $n=k$,

$$
1^{2}+2^{2}+3^{2}+\ldots+k^{2}=(k(k+1)(2 k+1)) / 6
$$

\uparrow Induction Hypothesis

Show that the statement is true for $n=k+1$

Example 2 using The Principle of Mathematical Induction

for $n=k+1$

$$
\begin{aligned}
1^{2} & +2^{2}+3^{2}+\ldots+(k+1)^{2} \\
& =((k+1)((k+1)+1)(2(k+1)+1)) / 6 \\
& =((k+1)(k+2)(2 k+3)) / 6
\end{aligned}
$$

Example 2 using The Principle of Mathematical Induction

$$
\begin{aligned}
& ((k+1)((k+1)+1)(2(k+1)+1)) / 6 \\
& =\left(\left(k^{2}+2 k+1+k+1\right)(2 k+3)\right) / 6 \\
& =\left(\left(k^{2}+3 k+2\right)(2 k+3)\right) / 6 \\
& =((k+2)(k+1)(2 k+3)) / 6
\end{aligned}
$$

Example 2 using The Principle of Mathematical Induction

$$
\begin{aligned}
1^{2} & +2^{2}+3^{2}+\ldots+(k+1)^{2} \\
& \left.=1^{2}+2^{2}+3^{2}+\ldots+k^{2}\right)+(k+1)^{2} \\
& =(k(k+1)(2 k+1)) / 6+(k+1)^{2} \\
& =\left(k(k+1)(2 k+1)+6(k+1)^{2}\right) / 6
\end{aligned}
$$

Example 2 using The Principle of Mathematical Induction

$$
\begin{aligned}
1^{2} & +2^{2}+3^{2}+\ldots+(k+1)^{2} \\
& =\left(k(k+1)(2 k+1)+6(k+1)^{2}\right) / 6 \\
& =(k+1)[k(2 k+1)+6(k+1)] / 6 \\
& =(k+1)\left[2 k^{2}+7 k+6\right] / 6 \\
& =((k+1)(k+2)(2 k+3)) / 6
\end{aligned}
$$

Example 2 using The Principle of Mathematical Induction

This is the result wanted

$$
\begin{aligned}
1^{2}+ & 2^{2}+3^{2}+\ldots+(k+1)^{2} \\
& =((k+1)(k+2)(2 k+3)) / 6
\end{aligned}
$$

- Conclusion: By the Principle of Mathematical induction
$1^{2}+2^{2}+3^{2}+\ldots+n^{2}$
$=(n(n+1)(2 n+1)) / 6$, is true for all $n \geq 1$

Example 3 using The Principle of Mathematical Induction

- Prove that for any integer $n \geq 1$,
$2^{2 n}-1$ is divisible by 3 .

Example 3 using The Principle of Mathematical Induction

Solution:

- Step 1, $\mathrm{n}=1$
$2^{2(1)}-1=2^{2}-1=4-1=3$
3 is divisible by 3
- So the statement is true for $\mathrm{n}=1$.

Example 3 using The Principle of Mathematical Induction

- Step 2, suppose $k \geq 1$, and the statement is true for $n=k$,
$\underline{2^{2 k}-1}$ is divisible by 3
\uparrow Induction Hypothesis

Example 3 using The Principle of Mathematical Induction

Show that the statement is true for $n=k+1$

$$
2^{2(k+1)}-1=\left(2^{2 k} \cdot 2^{2}\right)-1=4\left(2^{2 k}\right)-1
$$

$2^{2 k}-1=3 t$ for some integer t (by induction hypothesis)

$$
\text { So } 2^{\mathbf{2 k}}=3 t+1
$$

Example 3 using The Principle of Mathematical Induction

$$
\begin{aligned}
2^{2(k+1)}-1 & =4\left(2^{2 k}\right)-1 \\
& =4(3 t+1)-1 \\
& =12 t+4-1=12 t+3 \\
& =3(4 t+1)
\end{aligned}
$$

Thus, $2^{2(k+1)}-1$ is divisible by 3 .

- Conclusion: By the Principle of Mathematical induction
$2^{2 n}-1$ is divisible by 3 for all $n \geq 1$

Example 4 using The Principle of Mathematical Induction

- Prove that $2^{n}<n$! for all $n \geq 4$,

Solution:

- Step 1, $\mathrm{n}_{0}=4$

$$
2^{4}=16<4!=24
$$

Thus, the statement is true for n_{0}.

Example 4 using The Principle of Mathematical Induction

- Step 2, suppose $k \geq 4$, and the statement is true for $n=k$,

$$
\frac{2^{k}<k!}{\uparrow} \text { Induction Hypothesis }
$$

Show that the statement is true for $n=k+1$

Example 4 using The Principle of Mathematical Induction

$n=k+1$, prove that $\quad 2^{k+1}<(k+1)!$
Multiplying both sides of the inequality

$$
2^{k}<k!\text { by } 2
$$

2. $2^{k}<2 . k$!
$<(k+1) \cdot k!=(k+1)!$
$P(k+1)$ is true when $p(k)$ is true, so

$$
2^{n}<n!\forall n \geq 4
$$

The Principle of Mathematical Induction (Strong Form)

- P is true for some integer n_{0};
- if $k \geq n_{0}$ is any integer and p is true for all integers ℓ in the range $n_{0} \leq \ell<k$, then it is true also for k.
- Then p is true for all integers $n \geq n_{0}$.

The Principle of Mathematical Induction (Strong Form)

■ $\boldsymbol{P}(\mathrm{n})$ is true for all positive integers n :

- Basis Step: The proposition $\boldsymbol{P}(1)$ is shown to be true.

■ Inductive Step: It is shown that $[\boldsymbol{P}(1) \wedge \boldsymbol{P}(2) \wedge \ldots \wedge \boldsymbol{P}(\mathrm{k})] \rightarrow \boldsymbol{P}(\mathrm{k}+1)$ is true for every positive integer k .

The Principle of Mathematical Induction

(Strong Form)
 (Weak Form)

- Assume the truth of the statement for all integers less than some integer, and
prove that the statement is true for that integer.

Example 5 using The Principle of Mathematical Induction (Strong Form)

- Prove that every natural number $n \geq 2$ is either prime or the product of prime numbers.

Example 5 using The Principle of Mathematical Induction (Strong Form)

Solution:

- Basis Step: $\mathrm{n}_{0}=2$, the assertion of the theorem is true.
- Suppose that every integer ℓ in the interval $2 \leq \ell<k$ is either prime or the product of primes.

Example 5 using The Principle of Mathematical Induction (Strong Form)

- I nductive Step:
- If k is prime, the theorem is proved.
- if k is not prime, then k can be factored $k=a b$, where a and b are inegers satisfing $2 \leq a, b<k$.
- By induction hypothesis, each of a and b is either prime or the product of primes.
- k is the product of primes, as required.

Example 5 using The Principle of Mathematical Induction (Strong Form)

Conclusion: By the Principle of Mathematical Induction, we conclude that every $\mathrm{n} \geq 2$ is prime or the product of two primes.

Example 5 using The Principle of Mathematical Induction (Strong Form)

- An store sells envelopes in packages of five and twelve and want to by \mathbf{n} envelopes.
- Prove that for every $\mathbf{n} \geq \mathbf{4 4}$ the store can sell you exactly \mathbf{n} envelopes
(assuming an unlimited supply of each type of envelope package).

Example 5 using The Principle of Mathematical Induction (Strong Form)

. Solution:

Given that envelopes are available in packages of 5 and 12, we wish to show an order for n envelopes can be filled exactly, provided $n \geq 44$.

Example 5 using The Principle of Mathematical Induction (Strong Form)

- Assume that $k>44$ and that an order for ℓ envelopes can be filled if $44 \leq \ell<k$

Our argument will be that $k=(k-5)+5$

- By the induction hypothesis, k - 5 envelopes can be purchased with packages of five and twelve so, by adding one more package of five, we can purchase k.

Example 5 using The Principle of Mathematical Induction (Strong Form)

- We can apply the induction hypothesis if $\ell=k-5$ $k-5 \geq 44$ $k \geq 44+5=49$ $k \geq 49$
- The remaining cases, $k=45,46,47,48$ are checked individually(Note: $44 \leq \ell<k$).

Example 5 using The Principle of Mathematical Induction (Strong Form)

- $45=9$ packages of five envelopes
- $46=3$ three packages of twelve and 2 package of five.
- 47 = 1 package of twelve and 7 packages of five.
- $48=4$ packages of twelve.

Mathematical Induction and Well Ordering

- The Well ordering principle states that "any nonempty set of natural numbers has a smallest element."
- A set containing just one element has a smallest member, the element itself, so the Well-Ordering Principle is true for sets of size $\mathrm{n}_{0}=1$.

Mathematical Induction and Well Ordering

- Suppose this principle is true for sets of size k. Assume that any set of k natural numbers has a smallest member.
- Given a set S of $k+1$ numbers, remove one element a . The remaining k numbers have a smallest element, say b, and the smaller of a and b is the smallest element of S.

Mathematical Induction and Well Ordering

- We may use the Well-Ordering Principle to prove the Principle of Mathematical Induction (weak form).

Mathematical Induction and Well Ordering

■ Suppose that p is a statement involving the integer n that we wish to establish for all integers greater than or equal to some given integer $\mathrm{n}_{0 .}$. Assume:

1. p is true for $n=n_{0}$, and
2. If k is an integer, $k \geq n_{0}$, and p is true for k, then P is also true for $k+1$.

How the Well-Ordering Principle show

 that P is true for all $n \geq n_{0}$?1. Assume $n_{0} \geq 1$.
2. If p is not true for all $n \geq n_{0}$, then the set S of natural numbers $n \geq n_{0}$, for which p is false is not empty.
3. By the well_ordering Principle, S has a smallest element a. Now $a \neq n_{0}$ because was established that P is true for $n=n_{0}$.

How the Well-Ordering Principle show

 that P is true for all $n \geq n_{0}$?1. Thus a $>\mathrm{n}_{0}, \mathrm{a}-1 \geq \mathrm{n}_{0}$.
2. Also, $a-1<a$. By minimality of a, p is true for $k=a-1$.
3. We are foced to conclude that our starting assumption is false: \mathcal{P} must be true for all $n \geq n_{0}$.

How the Well-Ordering Principle show

 that P is true for all $n \geq \mathrm{n}_{0}$?3. By assumption $2, p$ is true for $k+1=a$, a contradiction.

> If k is an integer, $k \geq n_{0}$, and p is true for k, then P is also true for $k+1$.

We are foced to conclude that our starting assumption is false: p must be true for all $\mathrm{n} \geq \mathrm{n}_{0}$.

Mathematical Induction and Well Ordering

- The priciples of Well-Ordering and Mathematical Induction (weak form) are equivalent.

Recursively Defined Sequences

- Suppose n is a natural number. How should define 2^{n} ?

$$
\begin{gathered}
2^{n}=\frac{2 \cdot 2 \cdot 2 \ldots 2}{n 2^{\prime} s} \\
2^{1}=2, \text { and for } k \geq 1,2^{k+1}=2 \cdot 2^{k}
\end{gathered}
$$

a recursive definition \uparrow

Recursively Defined Sequences

- n ! is a recursive sequence

$$
\begin{aligned}
& 0!=1 \text { and } \\
& \quad \text { for } k \geq 0,(k+1)!=(k+1) k!
\end{aligned}
$$

Recursively Defined Sequences

- A sequence is a function whose domain is some infinite set of integers (often N) and whose range is a set of real number(R).

Example: The sequence that is the function
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}$
is described by the list $1,4,9,16, \ldots$

Recursively Defined Sequences

$$
1,4,9,16, \ldots
$$

- The numbers in the list (the range of the function) are called the terms of the sequence.
- The sequence $2,4,8,16$, .. can be defined recursively like this

$$
a_{1}=2 \text { and for } k \geq 1, a_{k+1}=2 a_{k}
$$

Recursively Defined Sequences

- The equation $a_{k+1}=2 a_{k}$ defines one member of the sequence in terms of the previus.
- It is called a recurrence relation.
- $a_{1}=2$ is called an initial condition.
- $a_{2}=2 a_{1}=2(2)=4 . \quad k=2$
- $a_{3}=2 a_{2}=2(4)=8 . \quad k=3$

Recursively Defined Sequences

- There are other posible recursive definitions that describe the same sequence
- $a_{0}=2$ and for $k \geq 0, a_{k+1}=2 a_{k}$ or
- $\mathrm{a}_{1}=2$ and for $\mathrm{k} \geq 0, \mathrm{a}_{\mathrm{k}}=2 \mathrm{a}_{\mathrm{k}-1}$

Example1: Recursively Defined Sequences

- Write down the first six terms of the sequence defined by
$a_{1}=1, a_{k+1}=3 a_{k}+1$ for $k \geq 1$. Guess a formula for a_{n}, and prove that your formula is correct.

Example1: Recursively Defined Sequences

- Solution

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=3 a_{1}+1=3(1)+1=4 \\
& a_{3}=3 a_{2}+1=3(4)+1=13 \\
& a_{4}=40 \\
& a_{5}=121 \\
& a_{6}=364
\end{aligned}
$$

Example 2: Recursive Function

\square Find the formula for a_{n}, given $a_{1}=1$ and $a_{k+1}=3 a_{k}+1$ for $k \geq 1$, without guesswork.
ㅁ Hint: Use the formula:

$$
a_{k+1}=1 / 23^{k+1}-3 / 2+1=1 / 2\left(3^{k+1}-1\right)
$$

Example 2: Recursive Function

\square Since $a_{n}=3 a_{n-1}+1$ and $a_{n-1}=3 a_{n-2}+1$,

$$
\begin{aligned}
a_{n}=3 a_{n-1}+1 & =3\left(3 a_{n-2}+1\right)+1 \\
& =3^{2} a_{n-2}+\left(1+3+3^{2}\right) .
\end{aligned}
$$

\square First part has the form $3^{k} a_{n-k}$
\square Second part is the sum of geometric series

$$
a_{n}=3^{n-1} a_{1}+\left(1+3+3^{2}+\ldots+3^{n-2}\right) .
$$

$\mathrm{a}_{1}=1$ and

$1+3+3^{2}+\ldots+3^{n-2}=1\left(1-3^{n-1}\right) /(1-3)$

$$
=1 / 2\left(3^{n-1}-1\right)
$$

$$
a_{n}=3^{n-1}+1 / 2\left(3^{n-1}-1\right)
$$

$$
\begin{aligned}
& =1 / 2\left(2 \cdot 3^{n-1}+3^{n-1}-1\right) \\
& =1 / 2\left(3 \cdot 3^{n-1}-1\right)
\end{aligned}
$$

$$
=1 / 2\left(3^{n}-1\right)
$$

Example 3 : Recursive Functions

\square Give an inductive definition of the factorial function $f(n)=n$!
\square The factorial function can be defined by specifying the initial value of this function, $f(0)=1$, and giving a rule for finding $f(n+1)$ from $f(n)$.

Example 3: Recursive Functions

$$
\square f(n+1)=(n+1) \cdot f(n)
$$

\uparrow Rule to determine a value of the factorial function

$$
f(n+1)=(n+1) \cdot f(n)
$$

$\square \quad f(5)=5$!

$$
f(5)=5 \cdot f(4)
$$

$$
=5 \cdot 4 \cdot f(3)
$$

$$
=5 \cdot 4 \cdot 3 \cdot f(2)
$$

$$
=5 \cdot 4 \cdot 3 \cdot 2 \cdot f(1)
$$

$$
=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot f(0)
$$

$$
=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1
$$

$$
=120
$$

Example 4: Recursive Functions

\square Give a recursive definition of a^{n}, with

$$
a \neq 0|a \in R \quad n \geq 0| n \in Z^{+} .
$$

\square The recursive definition contains two parts
First: $a^{0}=1$
Second: $\mathrm{a}^{\mathrm{n}+1}=\mathrm{a} \cdot \mathrm{a}^{\mathrm{n}}$, for $\mathrm{n}=0,1,2, \ldots, \mathrm{n}$
These two equations uniquely define a^{n} for all nonnegative integers n.

Example 5: Recursive Functions

\square Give a recursive definition of

$$
\sum_{k=0}^{n} a^{k}
$$

Example 5: Recursive Functions

\square The recursive definition contains two parts
The First part:

$$
\mathrm{n}
$$

$$
\sum_{k=0} a_{k}=a_{0}
$$

The Second part: n+1 $\quad n$
$\sum a_{k}=\left[\sum a_{k}\right]+a_{n+1}$
$k=0 \quad k=0$

Example 6: Recursive Functions

\square Find Fibonacci numbers, $f_{0}, f_{1}, f_{2}, \ldots$, are defined by the equations $f_{0}=0, f_{1}=1$, and

$$
f_{n}=f_{n-1}+f_{n-2} \quad \text { for } n=2,3,4, \ldots
$$

\square Find Fibonacci numbers $f_{2}, f_{3}, f_{4}, f_{5}$, and f_{6}

Example 6: Recursive Functions

\square Find Fibonacci numbers f_{2}, f_{3}, f_{4}, and f_{5}

$$
\begin{aligned}
& f_{n}=f_{n-1}+f_{n-2} \quad f_{0}=0, f_{1}=1, \\
& f_{2}=f_{1}+f_{0}=1+0=1 \\
& f_{3}=f_{2}+f_{1}=1+1=2 \\
& f_{4}=f_{3}+f_{2}=2+1=3 \\
& f_{5}=f_{4}+f_{3}=3+2=5
\end{aligned}
$$

The Characteristic Polynomial

The homogeneous recurrence relation $a_{n}=r a_{n-1}+s a_{n-2}$ can be rewritten in the form

$$
a_{n}-r a_{n-1}-s a_{n-2}=0,
$$

Which can be associated with $\mathbf{x}^{2}-\mathbf{r x}-\mathbf{s}$
\square This polynomial is called the characteristic polynomial of the recurrence relation

The Characteristic Polynomial

$$
x^{2}-r x-s
$$

\square Its roots are called the characteristic polynomial roots of the recurrence relation.

Example: The Characteristic Polynomial

\square The recurrence relation $a_{n}=5 a_{n-1^{-}} 6 a_{n-2}$ has the characteristic polynomial

$$
a_{2}-5 a_{2-1}-6 a_{2-2}=0,
$$

$$
x^{2}-5 x+6
$$

$$
(x-2)(x-3)
$$

and characteristic roots 2 and 3 .

Theorem the Characteristic Polynomial

\square Let x_{1} and x_{2} be the roots of the polynomial $x^{2}-r x-s$. Then the solution of the recurrence relation $a_{n}=r a_{n-1}+s a_{n-2}$, $n \geq 2$ is

$$
a_{n}= \begin{cases}c_{1} x_{1}^{n}+c_{2} x_{2}^{n} & \text { if } x_{1} \neq x_{2} \\ c_{1} x^{n}+c_{2} n x^{n} & \text { if } x_{1}=x_{2}=x\end{cases}
$$

where c_{1} and c_{2} are constants defined by initial conditions

Example: Theorem the Characteristic Polynomial

\square Solve the recurrence relation $a_{n}=5 a_{n-1^{-}} 6 a_{n-2}, n \geq 2$ given $a_{0}=-3, a_{1}=-2$.

The characteristic polynomial $x^{2}-5 x+6$. has the roots $x_{1}=2, x_{2}=3\left(x_{1} \neq x_{2}\right)$

$$
\begin{aligned}
& a_{n}=c_{1}\left(x_{1}{ }^{n}\right)+c_{2}\left(x_{2}{ }^{n}\right) \\
& a_{n}=c_{1}\left(2^{n}\right)+c_{2}\left(3^{n}\right) \\
& a_{0}=-3=c_{1}\left(2^{0}\right)+c_{2}\left(3^{0}\right) \\
& a_{1}=-2=c_{1}\left(2^{1}\right)+c_{2}\left(3^{1}\right)
\end{aligned}
$$

Example: Theorem the Characteristic Polynomial

$$
a_{n}=5 a_{n-1}-6 a_{n-2}, n \geq 2 \text { and } a_{0}=-3, a_{1}=-2 .
$$

Solve the following system of equations

$$
\begin{gathered}
c_{1}+c_{2}=-3 \\
2 c_{1}+3 c_{2}=-2 \\
c_{1}=-7, c_{2}=4, \text { so the solution is } \\
a_{n}=-7\left(2^{n}\right)+4\left(3^{n}\right)
\end{gathered}
$$

Arithmetic Sequences

\square The arithmetic sequence with first term a and common difference d is the sequence defined by

$$
a_{1}=a \quad \text { and }, \text { for } k \geq 1, \quad a_{k+1}=a_{k}+d
$$

and takes the form

$$
a, a+d, a+2 d, a+3 d, \ldots
$$

Arithmetic Sequences

\square For $n \geq 1$, the nth term of the sequence is

$$
a_{n}=a+(n-1) d
$$

\square The sum of n terms of the arithmetic sequence with first term a and common difference d is

$$
S=n / 2[2 a+(n-1) d]
$$

Arithmetic Sequences

\square The first 100 terms of the arithmetic sequence $-17,-12,-7,2,3, \ldots$ have the sum

$$
S=n / 2[2 a+(n-1) d]
$$

$$
\begin{aligned}
& S=100 / 2[2(-17)+(100-1) 5] \\
& S=50[-34+(99) 5] \\
& S=\underline{23,050}
\end{aligned}
$$

Arithmetic Sequences

\square The 100th term of this sequence is

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{100} & =a+(n-1) d \\
a_{100} & =-17+(100-1) 5 \\
a_{100} & =-17+(99) 5 \\
a_{100} & =-17+495=\underline{478}
\end{aligned}
$$

Geometric Sequences

- The geometric sequence with first term a and common ratio r is the sequence defined by

$$
a_{1}=a \quad \text { and }, \text { for } k \geq 1, a_{k+1}=r \cdot a_{k}
$$

and takes the form

$$
a, a r, a r^{2}, a r^{3}, a r^{4}, \ldots
$$

Geometric Sequences

\square The $n^{\text {th }}$ term being

$$
a_{n}=a \cdot r^{n-1}
$$

\square The sum S of n terms of the geometric sequence, provided $r \neq 1$ is

$$
S=a\left(1-r^{n}\right) /(1-r)
$$

Geometric Sequences

\square The sum of 29 terms of the geometric sequence with $a=8^{12}$ and $r=-1 / 2$ is

$$
\begin{aligned}
& \quad S=a\left(1-r^{n}\right) /(1-r) \\
& S=8^{12}\left(1-(-1 / 2)^{29}\right) /(1-(-1 / 2)) \\
& S=\left(2^{36}\left(1+(1 / 2)^{29}\right) / 3 / 2\right. \\
& S=\left(2^{36}+2^{7}\right) / 3 / 2=\underline{1 / 3\left(2^{37}+2^{8}\right)} \\
& S=45812984576
\end{aligned}
$$

Recurrence Relations

\square There is procedure for solving recurrence relations of the form

$$
a_{n}=r a_{n-1}+s a_{n-2}+f(n)
$$

where r and s are constants and $f(n)$ is some function of n.

Recurrence Relations

$$
a_{n}=r a_{n-1}+s a_{n-2}+f(n)
$$

\square Such recurrence relation is called a second-order linear recurrence relation with constant coefficients.
if $f(n)=0$, the relation is called homogeneous.

Second-Order Linear Recurrence Relation with Constant Coefficients

$$
a_{n}=r a_{n-1}+s a_{n-2}+f(n)
$$

$$
1 \quad 1 \quad 1
$$

\square Second-order: a_{n} is defined as a function of the two terms preceding it.
\square Linear: the terms a_{n-1} and a_{n-2} appear by themselves, to the first power, and with constant coefficient.

Examples: Second-order linear recurrence relation with constant coefficients

$$
a_{n}=r a_{n-1}+s a_{n-2}+f(n)
$$

1. The Fibonacci sequence:

$$
a_{n}=a_{n-1}+a_{n-2}, r=s=1
$$

2. $a_{n}=5 a_{n-1}+6 a_{n-2}+n$,

$$
r=5, s=6, f(n)=n
$$

3. $a_{n}=3 a_{n-1}$.

Homogeneous with $r=3, s=0$

Topics covered

- Mathematical Induction
\square Recursively Defined Sequences.
\square Solving Recurrence Relations.

Reference

- "Discrete Mathematics with Graph Theory", Third Edition, E. Goodaire and Michael Parmenter, Pearson Prentice Hall, 2006. pp 147-183.

