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Mathematical Induction

Mathematical induction is one of 
the most basic methods of proof.

It is applied in every area of 
mathematics.



Mathematical Induction

Mathematical induction is used 
to prove propositions of the form 

∀n P(n) 

where the universe of discourse 
is the set of positive integers.



Mathematical Induction

It is a method of mathematical proof 
typically used to establish that 

a given statement is true of all natural 
numbers, or

otherwise is true of all members of an 
infinite sequence. 



Mathematical induction can be analized 
as the domino effect

1. The first domino will fall. 
2. Whenever a domino falls, its next 

neighbor will also fall. 
Then you can conclude that all dominos 
will fall.

http://en.wikipedia.org/wiki/Domino_effect


Steps of Mathematical Induction

1. Basis Step: showing that the statement 
holds when n = 0 or any initial value.

1. Inductive step: showing that if the 
statement holds for n = m, then the same 
statement also holds for n = m + 1. 

The proposition following the word "if" is 
called the induction hypothesis. 



Example: Mathematical Induction

Suppose we wish to prove the 
statement:

for all natural numbers n. 



Example: Mathematical Induction

This is a simple formula for the sum of the 
natural numbers up to the number n. 



Check if it is true for n = 1.

The sum of the first 1 natural 
numbers is 1, and

So the statement is true for n = 1. 

The statement is defined as P(n), and 
P(1) holds.



Now we have to show that if the 
statement holds when n = m, then 

it also holds when n = m + 1. 

Assume the statement is true for n = m



Under this assumption, it must be 
shown that P(k+1) is true, namely, that



Adding m + 1 to both sides gives

This last equation shows that P(m+1) is 
true.



Symbolic → ally, we have shown that:

The inductive steps are expressed as 
the following rule of inference

[P(1) ∧ ∀m (P(m) → P(m+1))] → ∀n P(n)



Some Common Proof Techniques

Direct proof: where the conclusion is 
established by logically combining the 
axioms, definitions and earlier theorems. 

Proof by induction: where a base case is 
proved, and an induction rule used to 
prove an (often infinite) series of other 
cases.

http://en.wikipedia.org/wiki/Direct_proof
http://en.wikipedia.org/wiki/Mathematical_induction
http://en.wikipedia.org/wiki/Infinite


Some Common Proof Techniques

Proof by contradiction (also known as 
reductio ad absurdum): where it is shown 
that if some statement were false, a 
logical contradiction occurs, hence the 
statement must be true. 

http://en.wikipedia.org/wiki/Reductio_ad_absurdum


Some Common Proof Techniques

Proof by construction: constructing a 
concrete example with a property to show 
that something having that property 
exists. 

Proof by exhaustion: where the conclusion 
is established by dividing it into a finite 
number of cases and proving each one 
separately. 

http://en.wikipedia.org/wiki/Proof_by_construction
http://en.wikipedia.org/wiki/Proof_by_exhaustion


Some Common Proof Techniques

A combinatorial proof establishes the 
equivalence of different expressions 
by showing that they count the same 
object in different ways. 

Usually a one-to-one correspondence
is used to show that the two 
interpretations give the same result.

http://en.wikipedia.org/wiki/Combinatorial_proof
http://en.wikipedia.org/wiki/One-to-one_correspondence


Some Common Proof Techniques

A statement which is thought to be true 
but has not been proven yet is known as 
a conjecture.

In most axiom systems, there are 
statements which can neither be proven 
nor disproven.

http://en.wikipedia.org/wiki/Conjecture


The Principle of Mathematical Induction

P is true for some particular integer n0.

If k ≥ n0 is an integer and P is true for k, 
then P is true for the next integer k + 1 
(Induction hypothesis).

Then P is true for all integers n ≥ n0 .



The Principle of Mathematical Induction

A proof by mathematical induction that
P(n) is true for every positive integer n
consists of two steps:

Basis step: The proposition P(1) is shown 
to be true.

Inductive step: The implication 
P(k) →P(k+1)

is shown to be true for every positive 
integer k.



Example 1 using The Principle of 
Mathematical Induction

Prove that for any integer n ≥ 1 the sum 
of the odd integers from 1 to 2n – 1 is n2.

The sum in question  is often written 

1 + 3 + 5 + … + (2n – 1).

A formula of the 
general term

Odd numbers



Example 1 using The Principle of 
Mathematical Induction

(2n – 1) Evaluating the general 
term, we can obtain all numbers of 
this serie

n = 1

1 = (2(1) – 1) = 2 – 1 

n = 2

3 = (2(2) – 1) = 4 – 1 
…



Example 1 using The Principle of 
Mathematical Induction

n

1 + 3 + 5 + …+ (2n – 1) = Σ (2i – 1)          
i=1

We can prove that, for all integers n ≥ 1, 

1 + 3 + 5 + …+ (2n – 1) = n2

n 
Σ (2i – 1) = n2

i=1



Example 1 using The Principle of 
Mathematical Induction

Step 1,    n0 = 1 

When n = 1, 
1 + 3 + 5 + …+ (2n – 1)  means

“the sum of the odd integers from 1 to 
2(1) – 1 = 1.”



Example 1 using The Principle of 
Mathematical Induction

Step 2,  Suppose k is an integer, k ≥ 1, 
and the statement is true for n = k 

suppose 
1 + 3 + 5 + …+ (2k – 1) = k2

Induction Hypothesis



Example 1 using The Principle of 
Mathematical Induction

Now, show that the statement is true 
for the next integer, n = k + 1 

1 + 3 + 5 + …+ (2(k+1) – 1) = (k + 1)2

If  (2(k+1) – 1) = 2k +1, then

1 + 3 + 5 + …+ (2k+1) = (k + 1)2



Example 1 using The Principle of 
Mathematical Induction

The sum on the left is the sum of the 
odd integers from 1 to 2k + 1.

This is the sum of the odd integers from 
1 to 2k – 1, plus the next odd integer, 
2k + 1

1 + 3 + 5 + …+ (2k+1) 

= [1 + 3 + 5 + …+ (2k – 1)] + (2k + 1)



Example 1 using The Principle of 
Mathematical Induction

By induction hypothesis, we know that

1 + 3 + 5 + …+ (2k+1) 

= [1 + 3 + 5 + …+ (2k – 1)] + (2k + 1)

= k2 + (2k + 1)  = (k + 1)2



Example 1 using The Principle of 
Mathematical Induction

This is the result wanted

1 + 3 + 5 + …+ (2k – 1) + (2k + 1) = k2 + (2k + 1)

Conclusion: By the Principle of 
Mathematical induction

1 + 3 + 5 + …+ (2n – 1) = n2, is true for 
all n ≥ 1



Example 2 using The Principle of 
Mathematical Induction

Prove that for any integer n ≥ 1,

12 + 22 + 32 + … +n2

= (n(n +1)(2n +1))/6



Example 2 using The Principle of 
Mathematical Induction

Solution: 
• Step 1,  n = 1
the sum of the integers from 12 to 12 is 12.

(1(1 + 1)(2.1 + 1))/6 = 6/6 = 1

So the statement is true for n = 1.



Example 2 using The Principle of 
Mathematical Induction

Step 2, suppose k ≥ 1, and the statement 
is true for n = k, 

12 + 22 + 32 + … +k2 = (k(k +1)(2k +1))/6

Induction Hypothesis

Show that the statement is true for n=k + 1



Example 2 using The Principle of 
Mathematical Induction

for n=k + 1

12 + 22 + 32 + … +(k + 1)2

= ((k+1)((k+1) +1)(2(k+1) +1))/6

= ((k+1)(k+2)(2k+3))/6



Example 2 using The Principle of 
Mathematical Induction

((k+1)((k+1) +1)(2(k+1) +1))/6

= ((k2 +2k+1+ k + 1)(2k+3))/6

= ((k2 +3k+2)(2k+3))/6

= ((k+2)(k+1)(2k+3))/6



Example 2 using The Principle of 
Mathematical Induction

12 + 22 + 32 + … +(k + 1)2

= 12 + 22 + 32 + … + k2) + (k + 1)2

= (k(k+1)(2k+1))/6  + (k + 1)2

= (k(k+1)(2k+1)  + 6(k + 1)2)/6



Example 2 using The Principle of 
Mathematical Induction

12 + 22 + 32 + … +(k + 1)2

= (k(k+1)(2k+1) + 6(k + 1)2) / 6

= (k+1) [k(2k+1) + 6(k + 1)] / 6

= (k + 1)[2k2 + 7k + 6] / 6

= ((k + 1)(k + 2)(2k + 3)) / 6



Example 2 using The Principle of 
Mathematical Induction

12 + 22 + 32 + … +(k + 1)2

= ((k + 1)(k + 2)(2k + 3)) / 6

This is the result wanted 

Conclusion: By the Principle of 
Mathematical induction

12 + 22 + 32 + … + n2

=(n(n +1)(2n +1))/6 , is true for all n ≥ 1



Example 3 using The Principle of 
Mathematical Induction

Prove that for any integer n ≥ 1,

22n – 1 is divisible by 3.



Example 3 using The Principle of 
Mathematical Induction

Solution: 
• Step 1,  n = 1

22(1) – 1 =  22 – 1 = 4 – 1 = 3 

3 is divisible by 3

So the statement is true for n = 1.



Example 3 using The Principle of 
Mathematical Induction

Step 2, suppose k ≥ 1, and the statement 
is true for n = k, 

22k – 1 is divisible by 3
Induction Hypothesis



Example 3 using The Principle of 
Mathematical Induction

Show that the statement is true for n= k + 1

22(k+1) – 1 = (22k.22)– 1 = 4(22k) – 1 

22k – 1 = 3t for some integer t (by induction 
hypothesis)

So  22k = 3t + 1 



Example 3 using The Principle of 
Mathematical Induction

22(k+1) – 1 = 4(22k) – 1 
= 4(3t + 1) – 1
= 12t + 4 – 1 = 12t + 3 
= 3(4t + 1)

Thus, 22(k+1) – 1 is divisible by 3.

Conclusion: By the Principle of 
Mathematical induction

22n – 1 is divisible by 3 for all n ≥ 1



Example 4 using The Principle of 
Mathematical Induction

Prove that 2n < n! for all n ≥ 4,

Solution: 
• Step 1,  n0 = 4

24 =  16 < 4! = 24

Thus, the statement is true for n0.



Example 4 using The Principle of 
Mathematical Induction

Step 2, suppose k ≥ 4, and the statement 
is true for n = k, 

2k < k! 
Induction Hypothesis

Show that the statement is true for n=k + 1



Example 4 using The Principle of 
Mathematical Induction

n = k + 1, prove that         2k+1 < (k + 1)! 

Multiplying  both sides of the inequality 
2k< k! by 2

2 . 2k < 2 . k! 
< (k + 1) . k! = (k + 1)!

P(k+1)  is true when p(k) is true, so 
2n < n! ∀ n≥4



The Principle of Mathematical Induction 
(Strong Form)

P is true for some integer n0;

if k ≥ n0 is any integer and P is true for all 
integers l in the range n0 ≤ l < k, then it 
is true also for k.

Then P is true for all integers n ≥ n0.



The Principle of Mathematical Induction 
(Strong Form)

P(n) is true for all positive integers n:

Basis Step: The proposition P(1) is 
shown to be true. 

Inductive Step: It is shown that

[ P(1) ∧ P(2) ∧ … ∧ P(k)]  → P(k + 1)

is true for every positive integer k.



The Principle of Mathematical Induction

(Strong Form) (Weak Form)

Assume the truth of 
the statement for all
integers less than 
some integer, and 

prove that the 
statement is true for 
that integer.

Assumed the truth 
of the statement for 
just one particular 
integer, and 

prove it true for the 
next largest integer.



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

Prove that every natural number 
n ≥ 2 is either prime or the 
product of prime numbers. 



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

Solution: 
• Basis Step: n0 = 2, the assertion of the 

theorem is true.

Suppose that every integer l in the 
interval 2 ≤ l < k is either prime or the 
product of primes.



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

• Inductive Step:
If k is prime, the theorem is proved.
if k is not prime, then k can be factored 
k = ab, where a and b are inegers 
satisfing 2 ≤ a, b < k.

By induction hypothesis, each of a and b is 
either prime or the product of primes.
k is the product of primes, as required.



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

Conclusion: By the Principle of 
Mathematical Induction, 
we conclude that every n ≥ 2 is prime 
or the product of two primes.



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

An store sells envelopes in packages of five
and twelve and want to by n envelopes.

Prove that for every n ≥ 44 the store can 
sell you exactly n envelopes 
(assuming an unlimited supply of each type 
of envelope package).



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

Solution:

Given that envelopes are available in 
packages of 5 and 12, we wish to show 
an order for n envelopes can be filled 
exactly, provided n ≥ 44.



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

Assume that k > 44 and that an order for 
l envelopes can be filled if 44 ≤ l < k

Our argument will be that k = (k – 5) + 5

By the induction hypothesis, k – 5  
envelopes can be purchased with 
packages of five and twelve so, by 
adding one more package of five, we can 
purchase k.



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

We can apply the induction hypothesis if 
l =  k – 5 

k – 5 ≥ 44
k ≥ 44 + 5 = 49
k ≥ 49

The remaining cases, k = 45, 46, 47, 48 
are checked individually(Note: 44 ≤ l < k).



Example 5 using The Principle of 
Mathematical Induction (Strong Form)

45 = 9 packages of five envelopes

46 = 3 three packages of twelve and 
2 package of five.

47 = 1 package of twelve and 
7 packages of five.

48 = 4 packages of twelve.         



Mathematical Induction and Well Ordering

The Well ordering principle states that 
“any nonempty set of natural numbers 
has a smallest element.”

A set containing just one element has a 
smallest member, the element itself, so 
the Well-Ordering Principle is true for 
sets of size n0 = 1.         



Mathematical Induction and Well Ordering

Suppose this principle is true for sets of 
size k. Assume that any set of k natural 
numbers has a smallest member.

Given a set S of k + 1 numbers, remove 
one element a. The remaining k 
numbers have a smallest element, say 
b, and the smaller of a and b is the 
smallest element of S.         



Mathematical Induction and Well Ordering

We may use the Well-Ordering 
Principle to prove the Principle of 
Mathematical Induction (weak form). 



Mathematical Induction and Well Ordering

Suppose that P is a statement involving 
the integer n that we wish to establish 
for all integers greater than or equal to 
some given integer n0. Assume:

1. P is true for n = n0, and
2. If k is an integer, k ≥ n0, and P is true 

for k, then P is also true for k + 1. 



How the Well-Ordering Principle show 
that P is true for all n ≥ n0? 

1. Assume n0 ≥ 1.

2. If P is not true for all n ≥ n0, then the set 
S of natural numbers n ≥ n0, for which P is 
false is not empty.

3. By the well_ordering Principle, S has a 
smallest element a. Now a ≠ n0 because 
was established that P is true for n = n0.



How the Well-Ordering Principle show 
that P is true for all n ≥ n0? 

1. Thus a > n0 , a – 1 ≥ n0.

2. Also, a – 1 < a. By minimality of a, P is 
true for k = a – 1. 

3. We are foced to conclude that our 
starting assumption is false: P must be 
true for all n ≥ n0.



How the Well-Ordering Principle show 
that P is true for all n ≥ n0? 

3. By assumption 2, P is true for k + 1 = a, 
a contradiction. 

If k is an integer, k ≥ n0, and 
P is true for k, then P is also 
true for k + 1. 

We are foced to conclude that our starting 
assumption is false: P must be true for 
all n ≥ n0.



Mathematical Induction and Well Ordering

The priciples of Well-Ordering and 
Mathematical Induction (weak form) are 
equivalent.



Recursively Defined Sequences

Suppose n is a natural number. How 
should define 2n?

2n = 2 . 2 . 2  … 2
n 2’s

21 = 2  , and for k ≥ 1, 2k+1 = 2 . 2k

a recursive definition 



Recursively Defined Sequences

n! is a recursive sequence

0! = 1 and 
for k ≥ 0, (k + 1)! = (k+1)k!



Recursively Defined Sequences

A sequence is a function whose domain 
is some infinite set of integers (often N) 
and whose range is a set of real 
number(R).

Example: The sequence that is the function 

f: N → R defined by f(n) = n2

is described by the list 1, 4, 9, 16, …



Recursively Defined Sequences

1, 4, 9, 16, …

The numbers in the list (the range of the 
function) are called the terms of the 
sequence. 

The sequence 2, 4, 8, 16, … can be 
defined recursively like this 

a1 = 2 and for k ≥ 1, ak+1 = 2ak



Recursively Defined Sequences

The equation ak+1 = 2ak defines one 
member of the sequence in terms of 
the previus. 
It is called a recurrence relation.

a1 =2 is called an initial condition.

a2 =2a1 = 2(2) = 4.      k =2

a3 =2a2 = 2(4) = 8.      k =3



Recursively Defined Sequences

There are other posible recursive 
definitions that describe the same 
sequence 
a0 = 2 and for k ≥ 0, ak+1 = 2ak 

or

a1 = 2 and for k ≥ 0, ak = 2ak-1



Example1: Recursively Defined 
Sequences

Write down the first six terms of the 
sequence defined by 
a1 = 1, ak+1 = 3ak + 1 for k ≥ 1. Guess a 
formula for an, and prove that your 
formula is correct.



Example1: Recursively Defined 
Sequences

Solution
a1 = 1, 
a2 = 3a1 + 1 = 3(1) + 1 = 4
a3 = 3a2 + 1 = 3(4) + 1 = 13
a4 = 40
a5 = 121
a6 = 364



Example 2: Recursive Function

Find the formula for an, given a1 = 1 
and ak+1 = 3ak + 1 for k ≥1, without 
guesswork.
Hint: Use the formula:

ak+1 = ½ 3k+1 – 3/2 + 1 = ½(3k+1 -1)



Example 2: Recursive Function

Since an = 3an-1 + 1 and an-1 = 3an-2 + 1, 

an = 3an-1 + 1= 3(3an-2 + 1) + 1 
= 32an-2 + (1 + 3 + 32).

First part has the form 3kan-k

Second part is the sum of geometric 
series



an = 3n-1a1 + (1 + 3 + 32 + … + 3n-2).

a1  = 1  and 
1 + 3 +32 + … + 3n-2 = 1(1 – 3n-1)/(1 – 3) 

=  ½ (3n-1 – 1)

an = 3n-1 + ½ (3n-1 – 1)

= ½ (2 . 3n-1 + 3n-1 – 1)

= ½ (3. 3n-1 – 1)

= ½ (3n – 1)



Example 3 : Recursive Functions

Give an inductive definition of the 
factorial function f(n) = n!

The factorial function can be defined by 
specifying the initial value of this function, 
f(0) = 1, and giving a rule for finding 
f(n+1) from f(n).



Example 3: Recursive Functions

f(n+1) = (n+1). f(n)

Rule to determine a 
value of the factorial 
function



f(n+1) = (n+1). f(n)

f(5) = 5!
f(5) = 5 . f(4) 

= 5 . 4 . f(3) 
= 5 . 4 . 3 . f(2)
= 5 . 4 . 3 . 2 . f(1)
= 5 . 4 . 3 . 2 . 1 . f(0)
= 5 . 4 . 3 . 2 . 1 . 1
= 120



Example 4: Recursive Functions

Give a recursive definition of an, with 
a ≠ 0 | a ∈ R  n ≥ 0 | n ∈ Z+.

The recursive definition contains two parts

First: a0 =  1
Second: an+1 = a . an, for n=0, 1, 2, …, n

These two equations uniquely define  
an for all nonnegative integers n.



Example 5: Recursive Functions

Give a recursive definition of

n

∑ ak

k=0



Example 5: Recursive Functions

The First part:

The Second part:
n+1                  n

∑ ak =  [ ∑ ak ]+ an+1

k=0 k=0

The recursive definition contains two parts
n

∑ ak =a0

k=0



Example 6: Recursive Functions

Find Fibonacci numbers, f0, f1, f2, …, are 
defined by the equations f0=0, f1=1, and 

fn = fn-1 + fn-2 for n = 2, 3, 4, …

Find Fibonacci numbers f2, f3, f4, f5, and f6



Example 6: Recursive Functions

Find Fibonacci numbers f2, f3, f4, and f5

fn = fn-1 + fn-2 f0 = 0, f1 = 1, 

f2 = f1 + f0 = 1 + 0 = 1

f3 = f2 + f1 = 1 + 1 = 2

f4 = f3 + f2 = 2 + 1 = 3

f5 = f4 + f3 = 3 + 2 = 5



The Characteristic Polynomial

The homogeneous recurrence relation
an= ran-1+ san-2 can be rewritten  in the 
form

an- ran-1- san-2 = 0, 

Which can be associated with x2 – rx - s

This polynomial is called the characteristic 
polynomial of the recurrence relation



The Characteristic Polynomial

x2 – rx - s

Its roots are called the characteristic 
polynomial roots of the recurrence 
relation.



Example: The Characteristic 
Polynomial

The recurrence relation an= 5an-1- 6an-2 
has the characteristic polynomial

a2- 5a2-1- 6a2-2 = 0, 

(x – 2) (x – 3) 
x2 – 5x + 6

and characteristic roots 2 and 3.



Theorem the Characteristic Polynomial

Let x1 and x2 be the roots of the polynomial 
x2 – rx – s. Then the solution of the 
recurrence relation an= ran-1+ san-2 ,     
n ≥ 2 is

where c1 and c2 are constants defined by initial 
conditions



Example: Theorem the Characteristic 
Polynomial

Solve the recurrence relation 
an= 5an-1- 6an-2 , n ≥ 2 given a0 = -3, a1 = -2.

The characteristic polynomial x2 – 5x + 6. 
has the roots x1 = 2,  x2 = 3  (x1 ≠ x2)

an = c1(x1
n) + c2(x2

n)
an = c1(2n) + c2(3n)
a0 = -3  = c1(20) + c2(30)
a1 = -2  = c1(21) + c2(31)



Example: Theorem the Characteristic 
Polynomial

an= 5an-1- 6an-2 , n ≥ 2 and a0 = -3, a1 = -2.

Solve the following system of equations
c1 + c2 = -3 
2c1 + 3c2 = -2 

c1 = -7, c2 = 4, so the solution is 
an =-7(2n) + 4(3n)



Arithmetic Sequences

The arithmetic sequence with first term a 
and common difference d is the sequence 
defined by

a1 =a    and, for k ≥ 1, ak+1 = ak + d

and takes the form

a, a + d, a + 2d, a + 3d, …



Arithmetic Sequences

For n ≥ 1, the nth term of the sequence is

an = a + (n – 1)d

The sum of n terms of the arithmetic 
sequence with first term a and common 
difference d is

S = n/2 [2a + (n – 1)d]



Arithmetic Sequences

The first 100 terms of the arithmetic 
sequence -17, -12, -7, 2, 3, … have the 
sum

S = n/2 [2a + (n – 1)d]

S = 100/2 [2(-17) + (100 – 1)5]

S = 50 [-34 + (99)5]

S = 23,050



Arithmetic Sequences

The 100th term of this sequence is

an = a + (n – 1)d

a100 = a + (n – 1)d

a100 = -17 + (100 – 1)5

a100 = -17 + (99)5

a100 = -17 + 495 = 478



Geometric Sequences

The geometric sequence with first term a 
and common ratio r is the sequence 
defined by

a1 =a    and, for k ≥ 1, ak+1 = r.ak

and takes the form

a, ar, ar2, ar3, ar4, …



Geometric Sequences

The nth term being

an = a . rn – 1

The sum S of n terms of the geometric 
sequence, provided r ≠ 1 is

S = a( 1 – rn) / (1 – r ) 



Geometric Sequences

The sum of 29 terms of the geometric 
sequence with a = 812 and r = -1/2 is

S = a( 1 – rn) / (1 – r )

S = 812( 1 – (-½)29) / (1 – (-½) )

S = (236( 1 + (½)29) / 3/2

S = (236 + 27) / 3/2 = 1/3 (237 + 28)

S = 45812984576



Recurrence Relations

There is procedure for solving 
recurrence relations of the form

an = ran-1 + san-2 + f(n)

where r and s are constants and f(n) 
is some function of n.



Recurrence Relations

an = ran-1 + san-2 + f(n)

Such recurrence relation is called a 
second-order linear recurrence 
relation with constant coefficients.

if f(n) = 0, the relation is called 
homogeneous.



Second-Order Linear Recurrence 
Relation with Constant Coefficients

an = ran-1 + san-2 + f(n)

Second-order:  an is defined as a 
function of the two terms preceding it.

Linear:  the terms an-1 and an-2 appear 
by themselves, to  the first power, and 
with constant coefficient.



Examples: Second-order linear recurrence 
relation with constant coefficients

an = ran-1 + san-2 + f(n)

1. The Fibonacci sequence: 
an = an-1 + an-2 , r = s = 1

2. an = 5an-1 + 6an-2 + n, 
r = 5, s = 6, f(n) = n.

3. an = 3an-1. 
Homogeneous with r = 3, s = 0
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Mathematical Induction 

Recursively Defined Sequences.

Solving Recurrence Relations.
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