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Principle of Counting

This chapter will illustrate some basic 
principles of counting.

The number of elements of a set S (|S|) in 
various combinations (union, intersection, 
and difference) of finite sets will be 
considered.



Principle of Counting

Let A and B be subsets of a finite universal 
set U. Then

a) |A ∪ B| = |A| + |B| - |A ∩ B|

b) |A ∩ B| ≤ min {|A|, |B|}, the minimum of 
|A| and |B|.

c) |A \ B| = |A| - |A ∩ B| ≥ |A| - |B|



Principle of Counting

d) |Ac| = |U| - |A|

e) |A ⊕ B| = |A ∪ B| - |A ∩ B| 
= |A| + |B| - 2|A ∩ B| 
= |A \ B| + |B \ A|

f) |A x B| = |A| x |B|



Proof of Principle of Counting

a) |A ∪ B| = |A| + |B| - |A ∩ B|

If A = ∅, the A ∩ B = ∅, and |A| = |A ∩ B| =0
So the results holds

| ∅ ∪ B| = | ∅ | + |B| - | ∅ ∩ B|
|B| = | ∅ | + |B| - 0
|B| = |B|



Proof of Principle of Counting

a) |A ∪ B| = |A| + |B| - |A ∩ B|

Suppose A ∩ B = ∅, Let A = {a1, a2, …, ar} 
and B = {b1, b2, …, bs}. Then
| A ∪ B| = {a1, a2, …, ar, b1, b2, …, bs}

Since there is no repetition among the 
elements listed
| A ∪ B| = r + s = |A| + |B| 

= |A| + |B| - | A ∩ B|



Principle of Counting

|A ∪ B ∪ C| = |A ∪ (B ∪ C)|
↓

⇓

↓ ↓

= |A| + |B ∪ C| - |A ∩ (B ∪ C)|

= |A| + |B ∪ C| - |(A ∩ B) ∪ (A ∩ C)|

= |A| + [|B| + |C| - |B ∩ C|]
- [|(A ∩ B)+|A ∩ C| - |(A ∩ B) ∩ (A ∩ C)|]

= |A|+|B|+|C|-|B ∩ C|-|A ∩ B|-|A ∩ C|+|A ∩ B ∩ C|



Principle of Counting

Important properties 

|A ∪ B| = |A|+|B|- |A ∩ B|

(A ∩ B) ∩ (A ∩ C) = A ∩ B ∩ C



Example 1: Principle of Counting

Glenys is thinking about registering of a 
course in data analysis.

Of the 100 people have been registered, 
80 have own personal digital assistant 
(PDAs) and three-quarters of the group 
are men.



Example 1: Principle of Counting

a) Estimates the number of women who do 
not have PADS. How large might this 
number b? How small?

b) How many of the men registered in this 
course could conceivably own PADS?



Example 1: Principle of Counting

Introduce the following sets:
U set of all registrants, |U| = 100
M set of all male registrants, |M| = 75
P set of those registrants who own a PAD, 
|P| = 80

The set of women who do not have a PAD is 
Mc ∩ Pc



Example 1: Principle of Counting

The size of the following sets is given
|U| = 100, |M| = 75, and |P| = 80

The set of women who do not have a 
PAD is Mc ∩ Pc



Example 1: Principle of Counting

a) The number of women without PAD
Mc ∩ Pc = (M ∪ P)c one of the laws of De 

Morgan.

|Mc ∩ Pc|= |(M ∪ P)c| = |U| - |M ∪ P|

|Mc ∩ Pc|= |(M ∪ P)c| = 100 - |M ∪ P|   



Example 1: Principle of Counting

a) How big is M ∪ P (cont.)?

|M ∪ P| = |M| + |P| - |M ∩ P|
=  75 +  80 - |M ∩ P|
= 155 - |M ∩ P|

Therefore,
|Mc ∩ Pc|= 100 - |M ∪ P|

= 100 – (155 - |M ∩ P|)
= |M ∩ P| - 55 women without PADs



Example 1: Principle of Counting

a) How big is M ∪ P (cont.)?
|M ∩ P| ≤ |M| = 75, so

|Mc ∩ Pc| ≤ 75 – 55 = 20. 
conceivably, 

|Mc ∩ Pc| = 0 if |M ∩ P| = 55

So the number of women without PADs is 

0 ≤ |Mc ∩ Pc| ≤ 20

|Mc ∩ Pc|=|M ∩ P| - 55



Example 1: Principle of Counting

b) How many of the men could conceivably 
own PADs?

|M ∩ P| - 55 ≥ 0 women without PADs

|M ∩ P| ≥ 55 at least 55 men must own PADS



Example 1: Principle of Counting

b) (cont.)

The upper bound for |M ∩ P| is 75

Suppose that |M ∩ P| = 72 then 

|M ∪ P|= |M| + |P| - |M ∩ P| = 75 + 80 – 72 
= 83

There are 83 people in the  class who are 
either men or own a PDA



Example 1: Principle of Counting

c) How many men registered in the class 
would not have PADs?

|M \ P| = |M| - |M ∩ P| = 75 - 72 = 3



Example: Principle of Counting

d) How many of the owner of PADs are 
women?

|P \ M| = |P| - |P ∩ M| = 80 - 72 = 8



Example 1: Principle of Counting

e) How many of the those registered are 
either men without PADs or women with 
PADS?

|M  ⊕ P| = |P \ M| + |P \ M| = 3 + 8 = 11



Example 1: Principle of Counting

f) How many of people are either men or 
owners of a PAD?

|M  ⊕ P| = |M ∪ P| - |M ∩ P| = 83 - 72 = 11

or 
|M  ⊕ P| = |M| + |P| - 2|M ∩ P| 

= 75 + 80 – 2(72)  
= 155 – 144 = 11



Principle of Inclusion -Exclusion

Given a finite number of finite sets A1,. A2, …, An. 
The number of elements in the union A1 ∪ A2 ∪ … ∪ An

is | A1 ∪ A2 ∪ … ∪ An | 

= ∑ |Ai| - ∑ |Ai ∩ Aj| + ∑ |Ai ∩ Aj ∩ Ak | 
- … + (-1)n+1 | A1 ∩ A2 ∩ … ∩ An|  

Where the first sum is over all i, the second sum is 
over all pairs i, j with i < j, the third sum is over all 
triples i, j, k with i<j<k, and so forth.



Example: Principle of Inclusion-Exclusion

Of 30 PCs owned by faculty members is a 
certain university department, 20 do not 
have A drives, 8 have 19-inch monitors, 25 
are running Windows XP, 20 have at least 
two of these properties, and six have all 
three. 

a) How many PCs have at least one of these 
properties?

b) How many have none of these properties?
c) How many have exactly one property?



Example: Principle of Inclusion-Exclusion

Solution:

U set of PC owned by faculty members, |U| = 30

A set of PCs without A drives, |A| = 20

M set of PCs with 19-inch monitors, |M| = 8

X set of PCs running under Windows XP, |X| = 25

|(A ∩ M) ∪ (A ∩ X) ∪ (M ∩ X)| = 20

|A ∩ M ∩ X| = 6



Example: Principle of Inclusion-Exclusion

Using the Principle of Inclusion-Exclusion

20 = |(A ∩ M) ∪ (A ∩ X) ∪ (M ∩ X)|
= |A ∩ M| + |A ∩ X| + |M ∩ X| 

- |(A ∩ M) ∩ (A ∩ X)| - |(A ∩ M) ∩ (M ∩ X)| 
- |(A ∩ X) ∩ (M ∩ X)|
+|(A ∩ M) ∩ (A ∩ X) ∩ (M ∩ X)|

Each of the last four terms here is |A ∩ M ∩ X| 



Example: Principle of Inclusion-Exclusion

20 = |(A ∩ M) + (A ∩ X) + (M ∩ X)| - 2|A ∩ M ∩ X|;

therefore           
= |A ∩ M| + |A ∩ X|+|M ∩ X| 

= 20 + 2(6) = 32



Example: Principle of Inclusion-Exclusion

a) The number of PCs with at least one property is

|A ∪ M ∪ X| 
= |A|+ |M| + |X| 

- |A ∩ M| - |A ∩ X|-|M ∩ X| + |A ∩ M ∩ X|

= 20 + 8 + 25 - |(A ∩ M) + (A ∩ X) + (M ∩ X)| + 6

= 59 – 32 = 27



Example :Principle of Inclusion-Exclusion

b) How many PCs have none of these properties?

30 – 27 = 3 PCs have none of the specified properties. 

c) How many PCs have exactly one property?

27 the number of PC with at least one property 
20 the number of PC with at least two properties 

27 – 20 = 7.



Example 2:Principle of Inclusion-Exclusion

Suppose 18 of the 30 personal computers of the 
previous problem have Pentium III processors, 
including 10 of those running Windows, all of those 
with 19-inch monitors, and 15 of those with CD-
ROM drives. 

Suppose also that every computer has at least one 
of the four features now specified.

How many have at least three features?



Example 2:Principle of Inclusion-Exclusion

Solution:

P set of PCs with Pentium III processors, |P| = 18
W set of PCs running with Windows, |W| = 20

M set of PCs with 19-inch monitors, |M| = 8

C set of PCs with CD-ROM, |C| = 25



Example 2:Principle of Inclusion-Exclusion

n = |(W ∩ M ∩ C) ∪ (W ∩ M ∩ P)
∪ (W ∩ C ∩ P) ∪ (M ∩ C ∩ P)|

= |W ∩ M ∩ C|+|W ∩ M ∩ P|
+|W ∩ C ∩ P|+|M ∩ C ∩ P|
- 6|(W ∩ M ∩ C ∩ P| + 4|(W ∩ M ∩ C ∩ P| 
- |W ∩ M ∩ C ∩ P|

= |W∩ M ∩ C| + |W ∩ M ∩ P| + |M ∩ C ∩ P|
- 3|W ∩ M ∩ C ∩ P| 



Example 2:Principle of Inclusion-Exclusion

30 = |W ∪ M ∪ C ∪ P|
= |W| + |M| + |C| + |P| 

- |W ∩ M| - |W ∩ C| - |W ∩ P| 
- |M ∩ C|- |M ∩ P| - |C ∩ P| 

+ |W ∩ M ∩ C|+|W ∩ M ∩ P|
+|W ∩ C ∩ P|+|M ∩ C ∩ P|- |W ∩ M ∩ C ∩ P|

= |W|+|M|+|C|+|P| - |W∩ M| -|W ∩ C| - |W ∩ P| 
+ |M ∩ C| - |M ∩ P|- |C ∩ P| + n 

+ 2|W ∩ M ∩ C ∩ P| 



Example 2:Principle of Inclusion-Exclusion

because 
|W ∩ M ∩ C|+|W ∩ M ∩ P|

+|W ∩ C ∩ P|+|M ∩ C ∩ P|
= n + 3|W ∩ M ∩ C ∩ P|

From example 1

|W∩ C|+|W ∩ M|+|W ∩ C| = 32 and |W ∩ M ∩ C|= 6

Since M ⊆ P, we have W ∩ M ∩ C ∩ P = W ∩ M ∩ C,
and so |W ∩ M ∩ C ∩ P| = 6



Example 2:Principle of Inclusion-Exclusion

|W ∩ M ∩ C ∩ P| = 6, Therefore,

30 = 20 + 8 + 25 + 18 – 32 – 10 – 8 – 15 + n + 2(6)

So n = 30 – 71 + 65 -12 = 12 



Example 3:Principle of Inclusion-Exclusion

How many integers between 1 and 300 (inclusive) are

a) Divisible by at least one of 3, 5, 7?

b) Divisible by 3 and by 5 but not by 7?

c) Divisible by 5 but by neither 3 nor 7?

d) Relatively prime to 105?



Example 3:Principle of Inclusion-Exclusion

a) Divisible by at least one of 3, 5, 7?

Solution:

A = {n| 1 ≤ n ≤ 300, 3|n}

B = {n| 1 ≤ n ≤ 300, 5|n}

C = {n| 1 ≤ n ≤ 300, 7|n}



Example 3:Principle of Inclusion-Exclusion

a) Divisible by at least one of 3, 5, 7? (cont. )

For natural numbers a and b, the number of 
positive integers less than or equal to a and 
divisible by b is ⎣a/b⎦

|A| = ⎣300 /3⎦ = 100

|B| = ⎣300/5⎦ = 60

|C| = ⎣300/7⎦ = 42



Example 3:Principle of Inclusion-Exclusion

a) Divisible by at least one of 3, 5, 7? (cont. )

Find A ∩ B,  the set of integers between 1 and 
300 that are divisible by both 3 and 5.

3 and 5 are relatively prime numbers, any 
number divisible by each of them must be 
divisible by their product.

|A ∩ B| = ⎣300 /15⎦ = 20     



Example 3:Principle of Inclusion-Exclusion

a) Divisible by at least one, 3, 5, 7? (cont. )

Find A ∩ B, B ∩ C, A ∩ C,  and A ∩ B ∩ C 

|A ∩ B| = ⎣300 /15⎦ = 20
|B ∩ C | = ⎣300/35⎦ = 8
|A ∩ C| = ⎣300/21⎦ = 14
|A ∩ B ∩ C| = ⎣300/105⎦ = 2

|A ∪ B ∪ C| = 100 + 60 + 42 – 20 – 14 – 8 + 2= 162  

|A| = ⎣300 /3⎦ = 100
|B| = ⎣300/5⎦ = 60
|C| = ⎣300/7⎦ = 42



Example 3:Principle of Inclusion-Exclusion

b) Divisible by 3 and by 5 but not by 7? 

Those numbers in  (A ∩ B) \ C

A set of cardinality |A ∩ B| - |A ∩ B ∩ C|
= 20 – 2 = 18 



Example 3:Principle of Inclusion-Exclusion

c) Divisible by 5 but by neither 3 nor 7? 

Those numbers in  B \ (A ∪ C)  

A set of cardinality |B| - |B ∩ (A ∪ C)           

Since B ∩ (A ∪ C) = (B ∩ A) ∪ B ∩ C)



Example 3:Principle of Inclusion-Exclusion

c) Divisible by 5 but by neither 3 nor 7? (cont.)

The Principle of Inclusion-Exclusion gives
|B ∩ (A ∪ C)| 

= |B ∩ A| +|B ∩ C| - |(B ∩ A) ∩ (B ∩ C)|
= |B ∩ A| +|B ∩ C| - |B ∩ A ∩ C|

Because (B ∩ A) ∩ (B ∩ C) = B ∩ A ∩ C.

Therefore |B ∩ (A ∪ C)| = 20 + 8 – 2 = 26

|B| - |B ∩ (A ∪ C) = |B| - 26 = 60 – 26 = 34



Example 3:Principle of Inclusion-Exclusion

d) Relatively prime to 105?

105 = 3(5)(7), an integer is relatively prime to 
105 if and only if it is not divisible by 3, by 5, or 
by 7.

162 integers n in the range 1 ≤ n ≤ 300 are 
divisible by at least one of these numbers,

300 – 162 = 138 are not.



The Addition Rule

The number of ways in which precisely 
one of a collection of mutually 
exclusive events can occur is the sum 
of the numbers of ways each event 
can occur.



Example: Addition Rule

In how many ways can you get a total of 
six when rolling two dice?

Solution:
The event “get a six” is the union of the 
mutually exclusive subevents.

A1: “two 3’s”
A2: “a 2 and a 4”
A3: “a 1 and a 5”



Example: Addition Rule

Event A1 can occur in one way.
A2 can occur in two ways (depending 

on which die lands 4)
A3 can occur in two ways.

So the number of ways to get a six is
1 + 2 + 2 = 5



Multiplication Rule

The number of ways in which a sequence 
of events can occur is the product of the 
numbers of ways in which each individual 
event can occur.



Example: Multiplication Rule

License plates in the Canadian province 
of Ontario consist of four letters 
followed by three of the digits 0-9 (not 
necessarily distinct). 

How many different licenses plates can 
be made in Orlando?



Example: Multiplication Rule

Solution:
By the multiplication rule, the number of 
ways in which the four letters can be 
chosen is  26x26x26x26 = 264, (26 
letters in the alphabet).

By the multiplication rule, the number of 
ways in which the three digits can be 
chosen is  10x10x10 = 103, (10 digits).



Example: Multiplication Rule

Solution:
The number of different license plates 
that can be made in Ontario are

264 x 103 = 467,976,000



The Pigeonhole Principle

If n objects are put into m boxes 
and n> m, then at least one box 
contains two or more of the objects.



Example 1: The Pigeonhole Principle

Among any group of 367 people, 
there must be at least two with the 
same birthday, because there are 
only 366 possible birthdays.



Example 2: The Pigeonhole Principle

In any group of 27 English words, 
there must be at least two that 
begin with the same letter, since 
there are 26 letter in the English 
alphabet.



Example 3: The Pigeonhole Principle

How many students must be in a 
class to guarantee that at lest two 
students receive the same score on 
the final exam, if the exam is graded 
on a scale from 0 to 100 points?



Example 3: The Pigeonhole Principle

Solution: 
There are 101 (0- 100) possible scores on 
the final. 

The pigeonhole principle shows that 
among any 102 students there must be at 
least 2 students with the same score.



The Pigeonhole Principle (Strong Form)

If n objects are put into m boxes 
and n > m, then 
some boxes must contain at least 
⎡a/b⎤ objects.



The Pigeonhole Principle (Strong Form)

To prove the strong form of the 
Pigeonhole Principle, we establish the 
truth of its contrapositive. 

Note that 

⎡n/m⎤ < n/m + 1 and hence ⎡n/m⎤ -1 < n/m

Because, for any real number x, 
x ≤ ⎡x⎤ < x + 1



The Pigeonhole Principle (Strong Form)

Thus, if a box contains fewer 
than ⎡n/m⎤ objects, then it 
contains at most ⎡n/m⎤ -1 and 
so fewer than n/m objects.

If all m boxes are like this, we 
account for fewer than 

m x n/m = n objects. 



Example 1: The Pigeonhole Principle

Among 100 people there are at 
least ⎡100/12⎤ = 9 who were 
born in the same moth.



Example 2: The Pigeonhole Principle

What is the minimum number of 
students N required in a discrete 
mathematics class to be sure that 
at least six will receive the same 
grade, if there are five possible 
grades A, B, C, D, and F?



Example 2: The Pigeonhole Principle

Solution:

⎡N/5⎤ = 6 ceiling
N = 5 . 5 + 1 = 26
26 students is the minimum 
number of students needed to 
ensure that at least six students 
will receive the same grade. 



Example 3: The Pigeonhole Principle

How many cards must be selected from 
a standard deck of 52 cards to 
guarantee that at least three cards of 
the same suit are chosen?

Solution: 
Suppose 4 boxes, and as cards are 
selected they are placed in the box 
reserved for cards of that suit.



Example 3: The Pigeonhole Principle

If N cards are selected, there is at least 
one box containing ⎡N/4⎤ cards.

At least three cards of one suit are 
selected if ⎡N/4⎤ ≥ 3.

The smallest integer N such that ⎡N/4⎤ ≥ 3 
is 
N = 2.4 + 1 = 9, so nine cards suffice.



Topics covered

The Principle of Inclusion-Exclusion.

The addition and multiplication rules.

The Pigeonhole Principle.
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