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Algorithms

An algorithm is a finite set of 
precise instructions for 
performing a computation or 
for solving a problem.



Algorithms

The word algorithm evolved from 
the older word algorism which is a 
corruption of the surname of a 
Persian mathematician Abu Ja’far 
Muhammad ibn Mûsâal-Khâwrismî



Example: Algorithms

Describe an algorithm for finding the 
maximum value in a finite sequence of 
integers.

a) First method: Use the English language to 
describe the sequence of steps.

b) Second method: Use a form of pseudocode. 



Example Using English language

1) Set the temporary maximum equal to the 
first integer in the sequence.

2) Compare the next integer in the sequence 
to the temporary maximum, and if it is 
larger than the temporary maximum, set 
the temporary maximum equal to this 
integer.



Example Using English language

3) Repeat the previous step if there are more 
integers in the sequence.

4) Stop when there are no integers left in the 
sequence. The temporary maximum at this 
point is the largest integer in the sequence.



Pseudocode

Pseudocode provides an intermediate step 
between an English description of an 
algorithm  and an implementation for this 
algorithm in a programming language.

The steps of the algorithms are specified 
using instructions resembling those used in 
a programming language.



Example Using Pseudocode

function max(a1, a2, …, an: integers)
max = a1;

for i=2 to n

if max < ai then max = ai;

{Conclusion: max is the largest element}

a1 is assigned to max

The loop examines all terms

If a term is greater than 
the current value of max , 
it will be the new max



Properties of Algorithms

Input. An algorithm has input values from a 
specified set.

Output. From each set of input values are 
the solution to the problem.

Definiteness. The steps of an algorithm 
must be defined precisely.



Properties of Algorithms

Finiteness. An algorithm should produce the 
desired output after a finite (but perhaps 
large) number of steps for any input in the 
set.

Effectiveness. It must be possible to 
perform each step of an algorithm exactly 
and in a finite amount of time.



Properties of Algorithms

Generality. The procedure should be 
applicable for all problems of the desired 
form, not just for a particular set of input 
values.



Properties of Algorithm 1

The algorithm for finding the maximum 
value in a finite sequence of integers.

The Input is a sequence of integers

The Output is the largest integer in the 
sequence.



Properties of Algorithm 1

Each step of this algorithm is precisely 
defined, since only assignments, a finite 
loop, and conditional statement occur.

To show that the algorithm is correct when 
the algorithm terminates, the value of the 
variable max must be equal the maximum 
of the terms of the sequence.



Properties of Algorithm 1

The algorithm uses a finite number of steps, 
since it terminates after all the integers in 
the sequence have been examined.

The algorithm is general, since it can be 
used to find the maximum of any finite 
sequence of integers.



Example Algorithm 2

Describe an algorithm whose input is a list 
a1, a2, …, an of integers and whose output 
is their sum.

1. Set S = 0;
2. for i=1 to n, replace S by S + ai;
3. Output S.
{The value of S output at Step 3 is the 

desired sum}

loop



Algorithm translates into MATLAB 

% Input a list a1, a2, ..., an of integers and
% whose output is their sum
a = [5 17 3 6 4];
n = 5;
s = 0;
for i=1:n

s = s + a(i);
end
s



Algorithm translates into C

#include <stdio.h>
int main(void)
{

int a[5]={5, 17, 3, 6, 4}, s, i;
s = 0;
for (i = 0; i < 5; i++)

s = s + a[i];
printf("s = %d\n", s);
return 0;

}



Horner’s Algorithm

Given integers a0, a1, …, an and an integer 
x, to evaluate the expression a0+ a1x + 
a1x2 +  …+ anxn,.

1. Set S = an;
2. for i=1 to n, replace S by an-i + Sx;
3. Output S.
{The value of S is the desired number  a0+ 

a1x + a1x2 +  …+ anxn}

loop



Example of Horner’s Algorithm

Given f(x) = -1+ 2x + 4x2 - 3x3 and x = 5

1. Set S = a3= -3                  n = 3                   
an-i + Sx

1. i=1: replace S by a2 + Sx= 4 – 3(5) = -11        
i=2: replace S by a1 + Sx= 2 – 11(5) = -53      
i=3: replace S by a0 + Sx= -1– 53(5) = -266.         
Since i=n=3, Step 2 is complete.

2. Output S = -266



Example with MATLAB 

%Horner's Algorithm
% Evaluate f(x) = -1 + 2x + 4x^2 - 3x^3, x = 5
a = [-1 2 4 -3];
x = 5;
n = 4
s= a(n)
for i = 1:4

if (n-i)== 0, break, end
s = a(n-i) + s*x;

end
s  



Example with C language
// Horner’s Method
#include <stdio.h>

int main (void)

{
int a[] = { -1, 2, 4, -3}, x =5, i, s;

s = a[3] = -3;
for (i=1; i<=3; i++)

s = a[3-i] + s*x  ;
printf("S = %d\n", s);

return 0;
}



Example Algorithm

Describe an algorithm that, upon input of a 
list a1, a2, …, an , output it.

1. output a1;
2. if n=1, stop; 

else for i = 2 to n, 
if ai does not equal any of a1, a2, …, an

The algorithms outputs the distinct items 
among a1, a2, …, an



Searching Algorithms

The problem of locating an 
element in an ordered list 
occurs in many context and are 
called searching problems.



The General Searching Problem

Locate an element x in a list of distinct 
elements a1, a2, …,an, or determine that it is 
not in the list.

The solution to this search problem is the 
location of the term in the list that equals x 
(that is, i is the solution if x = ai) and is 0 if 
x is not in the list.



Some Searching Algorithms

The linear search or sequential search 
algorithm.

The binary search algorithm



The Linear Search Algorithm

Begins by comparing x and a1, when 
x = a1, the solution is the location of 
a1, namely 1.

When x ≠ a1, compare a1 with a2.      
If x = a2, the solution is the location 
of a2, namely 2.



The Linear Search Algorithm

When x ≠ a2, compare a1 with a3. Continue 
this process, comparing x successively with 
each term of the list until a match is found, 
where the solution is the location of that 
term.

Unless no match occurs. If the entire list has 
been searched without locating x, the 
solution is 0.



The Linear Search Algorithm (1)

to search a list a1, a2, …, an for the element x
i = 1
while (i ≤ n and x ≠ a1)

i = i + 1
if i ≤ n then location = i 

else location = 0
{location is the subscript of the term that 

equals x, or is 0 if x is not found}



The Linear Search Algorithm (2)

to search a list a1, a2, …, an for the element x
for i = 1 to n
if x = ai, output “true” and set i = 2n;
if i ≠ 2n, output “false.”

Setting i = 2n is a little trick that stops the 
loop as soon as x has been found and, if x is 
not in the list, ensures that “false” is output 
at the end.



For x = -2 and a list a1= 6, a2 =0, a3=-2, and 
a4 = 1

set i = 1, x ≠ a1= 6,

set i = 2, x ≠ a2= 0,

Since i = a3= -2, it outputs “true” and 

Sets i = 2n = 8. 

Since i is no longer in the range from 1 to n, 
the loops stops. 



For x = 2 and a list a1= 6, a2 =0, a3=-2, and 
a4 = 1

set i = 1, x ≠ a1= 6,

set i = 2, x ≠ a2= 0,

set i = 3, x ≠ a3= -2,

set i = 4, x ≠ a4= 1,

i = 4 ≠ 2n, so the algorithm outputs “false.”



The Binary Search Algorithm

Binary algorithm is used when the list 
has terms occurring in order of 
increasing size.

If the terms are numbers, they are 
listed from smallest to largest; if they 
are words are listed lexicographic, or 
alphabetic order.



The Binary Search Algorithm

It proceeds by comparing the element 
to be located to the middle term of 
the list.

The list then is split into two smaller 
sublists of the same size, or where 
one of these smaller has one fewer 
term than the other.



The Binary Search Algorithm

The search continue by restricting the 
search to the appropriate sublist 
based on the comparison of the 
element to be located and the middle 
term.



The Binary Search Algorithm

To search for 19 in the list

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

First split the list, which has 16 terms, into two 
smaller list with eight terms each, namely

1 2 3 5 6 7 8 10        12 13 15 16 18 19 20 22



The Binary Search Algorithm

Then, compare 19 and the largest term in the 
first list. Since 10 < 19, the first list is 
disregarded. 

The second list 12 13 15 16 18 19 20 22 is 
split in two smaller lists of four terms each

12 13 15 16                      18 19 20 22



The Binary Search Algorithm

Since 16 < 19, the first list is disregarded, and 
the search is restricted to the second of these 
lists 18 19 20 22

The, this list is split in two smaller lists of two 
terms each

18 19               20 22



The Binary Search Algorithm

Since 19 is not greater than the largest 
term of the first of these two list, which 
is also 19,

the search is restricted to the first list: 
18, 19,  which contains the 13th. And 
14th. Terms of the original list.



The Binary Search Algorithm

Then  list is split in two lists of one term each: 18 
and 19. Since 18 < 19, the search is restricted to 
the second list containing the 14th term of the 
original list, which is 19.

Now the search has been narrowed down to one 
term, a comparison is made, and 19 is located as 
the 14th. term in the original list.



The Binary Search Algorithm

Begins by comparing x with middle 
term of the sequence, am,  where              
m = ⎣(n+1)/2⎦ . 

Note:  ⎣x⎦ is the greatest integer not 
exceeding x.



The Binary Search Algorithm

If x > am, The search for x can be 
restricted to the second half of the 
sequence, which is am+1, am+2, …, an.           

If x is not greater than am, the search 
for x can be restricted to the first half of 
the sequence, which is a1, a2, …, am. 



The Binary Search Algorithm

The search has now been restricted to a 
list with no more than ⎡n/2⎤ elements. 

Note: ⎡x⎤ is the smallest integer term of 
the restricted list.



The Binary Search Algorithm

Then restrict the search to the first or 
second half of the list.

Repeat this process until the list with 
one term is obtained.

Then determine whether this term is x.



The Linear Search Algorithm

Begins by comparing x and a1, when 
x = a1, the solution is the location of 
a1, namely 1.

When x ≠ a1, compare a1 with a2.      
If x = a2, the solution is the location 
of a2, namely 2.



To search for an element x in an ordered list 
a1≤ a2≤ … ≤ an proceed as follows

i = 1 {i is left endpoint of search interval}

j = n {j is right endpoint of search interval}

while (i < j)
begin m = ⎣(i+j)/2⎦

i = i + 1
if x > am then i = m + 1 else j = m

end
if x = ai then location = i else location = 0

{location is the subscript of the term equals x}



To search for an element x in an ordered list 
a1≤ a2≤ … ≤ an proceed as follows

while n >  0
if n = 1 then

if x = a1 output “true” and set n = 0;
else output false and set n = 1;

else

set m = ⎣n/2⎦;

if x ≤ am replace the current list with a1, …, am and
set n = m; 
else replace the current list with am+1, …, an and 
replace n by n – m. 

end



Sorting

Ordering the elements of a list is a 
problem that occurs in many 
contexts.

A sorting is putting the elements into 
a list in which the elements are in 
creasing order.



Sorting

Sorting the list 7, 2, 1, 4, 5, 9 
produces the list  1, 2, 4, 5, 7, 9

Sorting the list d, h, c, a, f (using 
alphabetic order) produces the list a, 
c, d, f, h.



Sorting

Some algorithms are easier to 
implement.

Some algorithms are more efficient.

Some algorithms take advantages of 
particular computer architectures.

Some algorithms are particular clever.



Some Sorting Algorithms

The bubble sort algorithm.

The insertion sort algorithm.



The Bubble Sort Algorithm

The bubble sort algorithm is one of 
the simplest sorting algorithms, but 
not one of the most efficient.

It put a list into increasing order by 
successively comparing adjacent 
elements, interchanging them if they 
are in the wrong order.



The Bubble Sort Algorithm

To carry out the bubble sort algorithm, 
the basic operation is interchange a 
large element with a smaller one 
following it, starting at the beginning 
of the list., for a full pass. 

This process is repeated until the sort 
is complete.



The Bubble Sort Algorithm

“Discrete Mathematics and its Applications.” Fifth Edition, by Kenneth H. Rosen. Mc Graw Hill, 2003. pag 126



The Bubble Sort Algorithm

http://www.cs.bme.hu/~gsala/alg_an
ims/3/bsort-e.html



The Bubble Sort Algorithm

function bubblesort (a1, a2, …, an)
for i = 1 to n – 1 

for j = 1 to n – i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, …, an is increasing order}



The Bubble Sort Algorithm

To sort n elements a1, a2, …, an from least to 
greatest

for i =  n – 1 down to 1
for j = 1 to i

if aj > aj+1 swap aj and aj+1

{a1, a2, …, an is increasing order}



The Insertion Sort Algorithm

The insertion sort is a simple sorting 
algorithm, but it is usually not the 
most efficient.

To sort a list with n elements, the 
insertion sort begins with the second 
element.



The Insertion Sort Algorithm

The insertion sort compares this 
second element with the first element 
and insert if before the first element.

If it does not exceed the first element 
and after the first element if it exceeds 
the first element.



The Insertion Sort Algorithm

The third element is then compared 
with the first element, and if it is 
larger than the first element, 

It is compared with the second 
element; it is inserted into the correct 
position among the first three 
elements.



The Insertion Sort Algorithm

In general, in the jth step of the 
insertion sort, the jth element of the list 
is inserted into the correct position in 
the list of the previously sorted j – 1 
elements.

To insert the jth element in the list, a 
linear search technique is used; 



The Insertion Sort Algorithm

the jth element is successively compared 
with the already sorted j – 1 elements at 
the start of the list until the first element 
that is not less than this element is found 

or until it has been compared with all j – 1 
elements; the jth element is inserted in 
the correct position so that the first j 
elements are sorted.



The Insertion Sort Algorithm

Use the insertion sort to put the elements 
of the list 3, 2, 4, 1, 5 in increasing order.

1. Compare 2 and 3. Since 3 > 2, it places 2 
in the first position. Now 2, 3, 4, 1, 5.

2. The third element 4 is inserted and  
compared with 2  (4 > 2) and 3 (4 > 3). 4 
is placed in the third position. Now the list 
is 2, 3, 4, 1, 5



The Insertion Sort Algorithm

3. Next, find the correct place for the fourth 
element, 1, among the already sorted 
elements 2, 3, 4.

4. Since 1 < 2, we obtain the list 1, 2, 3, 4, 5
5. Finally, we insert 5 in to the correct 

position by successively comparing it to 1, 
2, 3, and 4.

6. Since 5 > 4, it goes at the end of the list, 
producing the correct order.



function insertion sort (a1, a2, …, an: real 
numbers with n ≥ 2)

for j = 2 to n
begin

i = i 
while aj > ai

i = i + 1 
m = aj

for k = 0 to j - i – 1
aj-k = aj-k-1

aj = m

end {a1, a2, …, an are sorted}



Merging Algorithm

To merge two given sorted lists L1: 
a1 ≤ a2 ≤ … ≤ as, and L2: b1 ≤ b2 ≤ … ≤ bt
of lengths s and t, into a single sorted 
list L3: c1≤c2≤ … ≤cs+t of length s + t, 
proceed as follows:

Step 1: Set L3 equal to an empty list

Step 2: If L1 is empty, set L3 = L2 and 
stop. If L2 is empty, set L3 = L1 and 
stop.



Merging Algorithm

Step 3: Suppose a1 ≤ b1 then remove a1
from L1 and append it to L3 ; if this 
empties L1, append the elements of  
L2 to L3 and stop.

If r > 0 elements remain in L1, label 
them a1, a2, … , ar in increasing 
order and repeat Step 3.



Merging Algorithm

Step 3 (cont.): Suppose a1 > b1 then 
remove b1 from L2 and append it to 
L3 ; if this empties L2, append the 
elements of  L1 to L3 and stop.

If r > 0 elements remain in L2, label 
them b1, b2, … , br in increasing 
order and repeat Step 3.



Example: Merging Algorithm

Apply the Merging algorithm to the lists 
L1: a1 a2 a3,   and    L2: b1 b2   b3                   

3   5   8                    1   7   8
The lists are not empty.

Step 3: a1 = 3 > b1 = 1 

Append b1 to the list  L3, which was 
initially  empty.



Example: Merging Algorithm

Step 3 (cont.):
Relabel the remaining elements 7 
and 8 of L2 as b1, b2, respectively. 
The lists are

L1: a1 a2 a3,     L2: b1 b2    and   L3: c1

3   5   8            7   8                  1



Example: Merging Algorithm

Step 3 (cont.) : a1 = 3 ≤ b1 = 7 

Append a1 to the list  L3, and relabel the 
remaining elements 5 and 8 of L1 as a1, 
a2, respectively. The lists are

L1: a1 a2,     L2: b1 b2    and   L3: c1 c2

5   8            7   8                  1  3



Example: Merging Algorithm

Step 3 (cont.) : a1 = 5 ≤ b1 = 7 

Append a1 to the list  L3, and relabel the 
remaining element 8 of L1 as a1. The 
lists are

L1: a1,     L2: b1 b2    and   L3: c1 c2   c3

8            7   8                  1  3   5



Example: Merging Algorithm

Step 3 (cont.) : a1 = 8 > b1 = 7 

Append b1 to the list  L3, and relabel the 
remaining element 8 of L2 as b1. The 
lists are

L1: a1,     L2: b2    and   L3: c1 c2   c3   c4

8            8                  1  3   5   7



Example: Merging Algorithm

Step 3 (cont.) : Since a1 = 8 = b1 = 8 

Append a1 to the list  L3, giving

L1: L2: b1    and   L3: c1 c2   c3   c4   c5

8                  1  3   5   7   8

Since L1 is empty, append 8 (from L2) to L3

L3:   c1 c2   c3   c4   c5   c6

1  3   5   7   8   8



Merge Sort Algorithm

To sort a list a1 , a2 , … , an into 
increasing order proceed as follows:

Step 1: Set F = 0

Step 2: for i=1 to n, let the list Li be the 
single element ai.

F is a flag to stop the algorithm



Merge Sort Algorithm

Step 3: While F = 0
if n = 1, set F = 1 and output L1;
if n = 2m is even

for i=1 to m
* merge the sorted list L2i-1 and L2i
and label the resulting sorted list Li; 

set n = m.

F is a flag to stop the algorithm



Merge Sort Algorithm

Step 3 (cont.): 
if n = 2m + 1 > 1 is odd

for i=1 to m
* merge the sorted list L2i-1 and L2i
and label the resulting sorted list Li; 
* set Lm+i and Li

set n = m + 1.
end while



Example: Merge Sort Algorithm

Sort the following list 
a1    a2    a3    a4    a5    a6   a7

2   9    1    4    6   5   3
Step 1: Set F = 0

Step 2: list L1, L2, L3 , L4, L5, L6, L7 are 
defined, each of length 1.

L1:2 L2:9 L3 :1 L4:4 L5:6 L6:5  L7:3



Example: Merge Sort Algorithm

Step 3 :
n = 2m + 1 > 1 is odd n = 2(3) + 1, m = 3

form 4 new lists L1, L2, L3 and L4,
by merging the first six former lists in 

pairs into three and adding the seventh

L1:2, 9  L2:1, 4 L3 : 6, 5   L4:3

n = m + 1 = 3 + 1 + 4



Example: Merge Sort Algorithm

Step 3 (cont.) :
n = 2m is even (n = 2(2) ), m = 2

form 2 new lists L1 and L2,
by merging the 4 former lists L1, L2
and L2, L4, respectively.

L1:1, 2 , 4, 9 L2:3, 5, 6

Now n is replaced by m = 2



Example: Merge Sort Algorithm

Step 3 (cont.) :
n = 2m is even (n = 2(1) ), m = 1

form 1 new list by merging the 2   
former lists L1 and L2, respectively.

L1:1, 2 ,3, 4 , 5, 6, 9

Now n is replaced by m = 1. Since n = 1, 
set F = 1, output L1, and stop.



Example: Merge Sort Algorithm



Example: Merge Sort Algorithm

http://www.geocities.com/SiliconValle
y/Program/2864/File/Merge1/merges
ort.html



Web with Sorting Algorithms 

http://www.cs.ubc.ca/~harrison/Java
/sorting-demo.html



Complexity

There are different measures of the 
efficiency of algorithms such as 
time, operation counts, amount of 
space to hold numbers in memory, 
and others. 



Example: Complexity

Find the complexity function for adding 
two n-digit integers if the basic operation 
is addition of single-digit integers. 

Suppose the integers to be added are a = 
(an-1 an-2 … a1 a0)10 and b = (bn-1 bn-2 … b1
b0)10 expressed in base 10 .



Example: Complexity

a0 the units digit of a

b0 the units digit of b 

a1 the tens digits of a 

b1 the tens digit of b



Example: Complexity

The units digits a + b is obtained by 
adding a0 and b0 (a single operation). 

To obtain  the tens digit, we add a1 and 
b1; then perhaps, we add 1, depending on 
whether there is a carry from the previous 
step. 



Example: Complexity

At most two single-digit additions (two 
operations) are required for the tens digits 
of a + b. 

Similarly, at most two operations are 
required for each digit of a + b after the 
units digit. 

An upper bound for the number operations 
is f(n) = 1 + 2(n – 1) = 2n - 1



Complexity

Most complexity problems is difficult to 
obtain an exact count for the number of 
single-digit additions required.

Complexity is measured in worst-case 
terms.

The addition of two n-digit numbers 
requires at most 2n – 1 single-digit 
additions.



Complexity

Complexity based on the number of 
operations that will never be exceeded. 
That is the upper-bound or worst-case.



Complexity

http://www.geocities.com/SiliconValle
y/Network/1854/Sort1.html



Complexity

The time required to solve a problem 
depend on:

1. the number of operations it uses.

2. The hardware used to run the program 
that implements the algorithm.



Complexity

If the hardware and software change, 
the time required to solve a problem of 
size n can be approximated by 
multiplying the previous time required 
by a constant.

On a supercomputer to solve a 
problem of size n a million times faster 
than on a PC.



Complexity: Big-Oh Notation

Big-O notation estimates the growth of 
a function without worrying about 
constant multipliers or smaller order 
terms.

Big-O notation does not consider the 
hardware or software used to implement 
the algorithm.



Complexity: Big-Oh Notation

We can assume that the different 
operations used in an algorithm take the 
same time, which simplifies the analysis 
considerably.

Big-O notation is used to estimate the 
number of operations an algorithm uses 
as its input grows.



Complexity: Big-Oh Notation

We can determine whether it is practical 
to use a particular algorithm to solve a 
problem as the size of the input increases.

We can compare two algorithms to 
determine which is more efficient as the 
size of the input grows.



Complexity: Big-Oh Notation

Two algorithms for solving a problem, one 
using 100n2 + 17n + 4 operations and the 
other using n3 operations, 

Big-O notation can help us see that the 
first algorithm uses far fewer operations 
when n is large, even though it uses more 
operations for small values of n, such as n 
= 10. 



Complexity: Big-Oh Notation

Let f and g be functions N → R, f is Big 
Oh of g and is written f = O(g) or 
O(g(x)) if there is an integer n0 and a 
positive real number c such that 

|f(n)| ≤ c|g(n)| for all n ≥ n0.

This is read as “f(x) is big-oh of g(x).”



Complexity: Big-Oh Notation

We can say

“There exists an integer n0 such that 
|f(n)| ≤ c|g(n)| for all n ≥ n0.”

“There exists an integer n0 such that 
|f(n)| ≤ c|g(n)| for all sufficiently large n.”



Complexity: Big-Oh Notation

Instead of saying “There exists an integer 
n0 such that |f(n)| ≤ c|g(n)| for all n ≥ n0.”

Say “|f(n)| ≤ c|g(n)| for all sufficiently 
large n.”

If f, g: N → R. are  functions that count 
operations,  f(n) and g(n) are positive for all 
sufficiently large n, then the absolute value 
symbol around them are not necessary.



Complexity: Big-Oh Notation

Let f(n) = 15n3 and g(n) = n3

|f(n)| ≤ c|g(n)| for all n ≥ n0.

With n0 = 1 and c = 15,  so f = O(g)
f is Big Oh of g



Example: Big-Oh Notation

Show that f(n) = n + 1 and g(n) = n2

If n ≥ 1 , f(n) ≤ n + n = 2n

because
2n  ≤ 2n2

Taking n0 = 1  c = 2 witnesses, f = O(g)



Complexity: Big-Oh Notation

Show that 7x2 is O(x3)

When x > 7, we have 7x2 < x3

The inequality is obtained by multiplying both 
sides of x > 7 by x2

C = 1 and k = 7 witnesses
When x > 1, 7x2 < 7x3, so that C= 1 and k = 1 
are also witnesses to the relationship 

7x2 is O(x3)



Properties: Big-Oh Notation

Let f, g, f1, g1 be functions N R

a) If = O(g), then f + g = O(g) 

b) If f = O(f1) and g = O(g1), 
then f . g = O(f1.g1)



Complexity: Some Definitions

If f and g are functions N → R, we say 
that f has smaller order than g and write 
f     g if and only if f = O(g), but g ≠ O(f).

If f = O(g) and g = O(f), then we say 
that f and g have the same order and 
write f     g.



Complexity: Some Definitions

n + 1       n2 ; thus n + 1 has smaller 
order than n2

15n3 n3 : 15n3 and n3 have the same 
order



Complexity: Some Propositions

Let f, g be functions N → R

a) If lim f(n)/g(n) = 0, then  f     g 
n →∞

b) If lim f(n)/g(n) = ∞, then  f     g 
n →∞

c) If lim f(n)/g(n) =   L for some number L ≠ 0, 
n →∞ then f   g 



Complexity: Some Propositions

Suppose a and b are real numbers a < b. 
Then na nb

logb n    n for any real number b, b > 1

loga n       logb n (two algorithm functions 
with bases larger than 1 have the same 
order.
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