
Foundations of Discrete
Mathematics

Chapters 8

By Dr. Dalia M. Gil, Ph.D.

Algorithms

An algorithm is a finite set of
precise instructions for
performing a computation or
for solving a problem.

Algorithms

The word algorithm evolved from
the older word algorism which is a
corruption of the surname of a
Persian mathematician Abu Ja’far
Muhammad ibn Mûsâal-Khâwrismî

Example: Algorithms

Describe an algorithm for finding the
maximum value in a finite sequence of
integers.

a) First method: Use the English language to
describe the sequence of steps.

b) Second method: Use a form of pseudocode.

Example Using English language

1) Set the temporary maximum equal to the
first integer in the sequence.

2) Compare the next integer in the sequence
to the temporary maximum, and if it is
larger than the temporary maximum, set
the temporary maximum equal to this
integer.

Example Using English language

3) Repeat the previous step if there are more
integers in the sequence.

4) Stop when there are no integers left in the
sequence. The temporary maximum at this
point is the largest integer in the sequence.

Pseudocode

Pseudocode provides an intermediate step
between an English description of an
algorithm and an implementation for this
algorithm in a programming language.

The steps of the algorithms are specified
using instructions resembling those used in
a programming language.

Example Using Pseudocode

function max(a1, a2, …, an: integers)
max = a1;

for i=2 to n

if max < ai then max = ai;

{Conclusion: max is the largest element}

a1 is assigned to max

The loop examines all terms

If a term is greater than
the current value of max ,
it will be the new max

Properties of Algorithms

Input. An algorithm has input values from a
specified set.

Output. From each set of input values are
the solution to the problem.

Definiteness. The steps of an algorithm
must be defined precisely.

Properties of Algorithms

Finiteness. An algorithm should produce the
desired output after a finite (but perhaps
large) number of steps for any input in the
set.

Effectiveness. It must be possible to
perform each step of an algorithm exactly
and in a finite amount of time.

Properties of Algorithms

Generality. The procedure should be
applicable for all problems of the desired
form, not just for a particular set of input
values.

Properties of Algorithm 1

The algorithm for finding the maximum
value in a finite sequence of integers.

The Input is a sequence of integers

The Output is the largest integer in the
sequence.

Properties of Algorithm 1

Each step of this algorithm is precisely
defined, since only assignments, a finite
loop, and conditional statement occur.

To show that the algorithm is correct when
the algorithm terminates, the value of the
variable max must be equal the maximum
of the terms of the sequence.

Properties of Algorithm 1

The algorithm uses a finite number of steps,
since it terminates after all the integers in
the sequence have been examined.

The algorithm is general, since it can be
used to find the maximum of any finite
sequence of integers.

Example Algorithm 2

Describe an algorithm whose input is a list
a1, a2, …, an of integers and whose output
is their sum.

1. Set S = 0;
2. for i=1 to n, replace S by S + ai;
3. Output S.
{The value of S output at Step 3 is the

desired sum}

loop

Algorithm translates into MATLAB

% Input a list a1, a2, ..., an of integers and
% whose output is their sum
a = [5 17 3 6 4];
n = 5;
s = 0;
for i=1:n

s = s + a(i);
end
s

Algorithm translates into C

#include <stdio.h>
int main(void)
{

int a[5]={5, 17, 3, 6, 4}, s, i;
s = 0;
for (i = 0; i < 5; i++)

s = s + a[i];
printf("s = %d\n", s);
return 0;

}

Horner’s Algorithm

Given integers a0, a1, …, an and an integer
x, to evaluate the expression a0+ a1x +
a1x2 + …+ anxn,.

1. Set S = an;
2. for i=1 to n, replace S by an-i + Sx;
3. Output S.
{The value of S is the desired number a0+

a1x + a1x2 + …+ anxn}

loop

Example of Horner’s Algorithm

Given f(x) = -1+ 2x + 4x2 - 3x3 and x = 5

1. Set S = a3= -3 n = 3
an-i + Sx

1. i=1: replace S by a2 + Sx= 4 – 3(5) = -11
i=2: replace S by a1 + Sx= 2 – 11(5) = -53
i=3: replace S by a0 + Sx= -1– 53(5) = -266.
Since i=n=3, Step 2 is complete.

2. Output S = -266

Example with MATLAB

%Horner's Algorithm
% Evaluate f(x) = -1 + 2x + 4x^2 - 3x^3, x = 5
a = [-1 2 4 -3];
x = 5;
n = 4
s= a(n)
for i = 1:4

if (n-i)== 0, break, end
s = a(n-i) + s*x;

end
s

Example with C language
// Horner’s Method
#include <stdio.h>

int main (void)

{
int a[] = { -1, 2, 4, -3}, x =5, i, s;

s = a[3] = -3;
for (i=1; i<=3; i++)

s = a[3-i] + s*x ;
printf("S = %d\n", s);

return 0;
}

Example Algorithm

Describe an algorithm that, upon input of a
list a1, a2, …, an , output it.

1. output a1;
2. if n=1, stop;

else for i = 2 to n,
if ai does not equal any of a1, a2, …, an

The algorithms outputs the distinct items
among a1, a2, …, an

Searching Algorithms

The problem of locating an
element in an ordered list
occurs in many context and are
called searching problems.

The General Searching Problem

Locate an element x in a list of distinct
elements a1, a2, …,an, or determine that it is
not in the list.

The solution to this search problem is the
location of the term in the list that equals x
(that is, i is the solution if x = ai) and is 0 if
x is not in the list.

Some Searching Algorithms

The linear search or sequential search
algorithm.

The binary search algorithm

The Linear Search Algorithm

Begins by comparing x and a1, when
x = a1, the solution is the location of
a1, namely 1.

When x ≠ a1, compare a1 with a2.
If x = a2, the solution is the location
of a2, namely 2.

The Linear Search Algorithm

When x ≠ a2, compare a1 with a3. Continue
this process, comparing x successively with
each term of the list until a match is found,
where the solution is the location of that
term.

Unless no match occurs. If the entire list has
been searched without locating x, the
solution is 0.

The Linear Search Algorithm (1)

to search a list a1, a2, …, an for the element x
i = 1
while (i ≤ n and x ≠ a1)

i = i + 1
if i ≤ n then location = i

else location = 0
{location is the subscript of the term that

equals x, or is 0 if x is not found}

The Linear Search Algorithm (2)

to search a list a1, a2, …, an for the element x
for i = 1 to n
if x = ai, output “true” and set i = 2n;
if i ≠ 2n, output “false.”

Setting i = 2n is a little trick that stops the
loop as soon as x has been found and, if x is
not in the list, ensures that “false” is output
at the end.

For x = -2 and a list a1= 6, a2 =0, a3=-2, and
a4 = 1

set i = 1, x ≠ a1= 6,

set i = 2, x ≠ a2= 0,

Since i = a3= -2, it outputs “true” and

Sets i = 2n = 8.

Since i is no longer in the range from 1 to n,
the loops stops.

For x = 2 and a list a1= 6, a2 =0, a3=-2, and
a4 = 1

set i = 1, x ≠ a1= 6,

set i = 2, x ≠ a2= 0,

set i = 3, x ≠ a3= -2,

set i = 4, x ≠ a4= 1,

i = 4 ≠ 2n, so the algorithm outputs “false.”

The Binary Search Algorithm

Binary algorithm is used when the list
has terms occurring in order of
increasing size.

If the terms are numbers, they are
listed from smallest to largest; if they
are words are listed lexicographic, or
alphabetic order.

The Binary Search Algorithm

It proceeds by comparing the element
to be located to the middle term of
the list.

The list then is split into two smaller
sublists of the same size, or where
one of these smaller has one fewer
term than the other.

The Binary Search Algorithm

The search continue by restricting the
search to the appropriate sublist
based on the comparison of the
element to be located and the middle
term.

The Binary Search Algorithm

To search for 19 in the list

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

First split the list, which has 16 terms, into two
smaller list with eight terms each, namely

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

The Binary Search Algorithm

Then, compare 19 and the largest term in the
first list. Since 10 < 19, the first list is
disregarded.

The second list 12 13 15 16 18 19 20 22 is
split in two smaller lists of four terms each

12 13 15 16 18 19 20 22

The Binary Search Algorithm

Since 16 < 19, the first list is disregarded, and
the search is restricted to the second of these
lists 18 19 20 22

The, this list is split in two smaller lists of two
terms each

18 19 20 22

The Binary Search Algorithm

Since 19 is not greater than the largest
term of the first of these two list, which
is also 19,

the search is restricted to the first list:
18, 19, which contains the 13th. And
14th. Terms of the original list.

The Binary Search Algorithm

Then list is split in two lists of one term each: 18
and 19. Since 18 < 19, the search is restricted to
the second list containing the 14th term of the
original list, which is 19.

Now the search has been narrowed down to one
term, a comparison is made, and 19 is located as
the 14th. term in the original list.

The Binary Search Algorithm

Begins by comparing x with middle
term of the sequence, am, where
m = ⎣(n+1)/2⎦ .

Note: ⎣x⎦ is the greatest integer not
exceeding x.

The Binary Search Algorithm

If x > am, The search for x can be
restricted to the second half of the
sequence, which is am+1, am+2, …, an.

If x is not greater than am, the search
for x can be restricted to the first half of
the sequence, which is a1, a2, …, am.

The Binary Search Algorithm

The search has now been restricted to a
list with no more than ⎡n/2⎤ elements.

Note: ⎡x⎤ is the smallest integer term of
the restricted list.

The Binary Search Algorithm

Then restrict the search to the first or
second half of the list.

Repeat this process until the list with
one term is obtained.

Then determine whether this term is x.

The Linear Search Algorithm

Begins by comparing x and a1, when
x = a1, the solution is the location of
a1, namely 1.

When x ≠ a1, compare a1 with a2.
If x = a2, the solution is the location
of a2, namely 2.

To search for an element x in an ordered list
a1≤ a2≤ … ≤ an proceed as follows

i = 1 {i is left endpoint of search interval}

j = n {j is right endpoint of search interval}

while (i < j)
begin m = ⎣(i+j)/2⎦

i = i + 1
if x > am then i = m + 1 else j = m

end
if x = ai then location = i else location = 0

{location is the subscript of the term equals x}

To search for an element x in an ordered list
a1≤ a2≤ … ≤ an proceed as follows

while n > 0
if n = 1 then

if x = a1 output “true” and set n = 0;
else output false and set n = 1;

else

set m = ⎣n/2⎦;

if x ≤ am replace the current list with a1, …, am and
set n = m;
else replace the current list with am+1, …, an and
replace n by n – m.

end

Sorting

Ordering the elements of a list is a
problem that occurs in many
contexts.

A sorting is putting the elements into
a list in which the elements are in
creasing order.

Sorting

Sorting the list 7, 2, 1, 4, 5, 9
produces the list 1, 2, 4, 5, 7, 9

Sorting the list d, h, c, a, f (using
alphabetic order) produces the list a,
c, d, f, h.

Sorting

Some algorithms are easier to
implement.

Some algorithms are more efficient.

Some algorithms take advantages of
particular computer architectures.

Some algorithms are particular clever.

Some Sorting Algorithms

The bubble sort algorithm.

The insertion sort algorithm.

The Bubble Sort Algorithm

The bubble sort algorithm is one of
the simplest sorting algorithms, but
not one of the most efficient.

It put a list into increasing order by
successively comparing adjacent
elements, interchanging them if they
are in the wrong order.

The Bubble Sort Algorithm

To carry out the bubble sort algorithm,
the basic operation is interchange a
large element with a smaller one
following it, starting at the beginning
of the list., for a full pass.

This process is repeated until the sort
is complete.

The Bubble Sort Algorithm

“Discrete Mathematics and its Applications.” Fifth Edition, by Kenneth H. Rosen. Mc Graw Hill, 2003. pag 126

The Bubble Sort Algorithm

http://www.cs.bme.hu/~gsala/alg_an
ims/3/bsort-e.html

The Bubble Sort Algorithm

function bubblesort (a1, a2, …, an)
for i = 1 to n – 1

for j = 1 to n – i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, …, an is increasing order}

The Bubble Sort Algorithm

To sort n elements a1, a2, …, an from least to
greatest

for i = n – 1 down to 1
for j = 1 to i

if aj > aj+1 swap aj and aj+1

{a1, a2, …, an is increasing order}

The Insertion Sort Algorithm

The insertion sort is a simple sorting
algorithm, but it is usually not the
most efficient.

To sort a list with n elements, the
insertion sort begins with the second
element.

The Insertion Sort Algorithm

The insertion sort compares this
second element with the first element
and insert if before the first element.

If it does not exceed the first element
and after the first element if it exceeds
the first element.

The Insertion Sort Algorithm

The third element is then compared
with the first element, and if it is
larger than the first element,

It is compared with the second
element; it is inserted into the correct
position among the first three
elements.

The Insertion Sort Algorithm

In general, in the jth step of the
insertion sort, the jth element of the list
is inserted into the correct position in
the list of the previously sorted j – 1
elements.

To insert the jth element in the list, a
linear search technique is used;

The Insertion Sort Algorithm

the jth element is successively compared
with the already sorted j – 1 elements at
the start of the list until the first element
that is not less than this element is found

or until it has been compared with all j – 1
elements; the jth element is inserted in
the correct position so that the first j
elements are sorted.

The Insertion Sort Algorithm

Use the insertion sort to put the elements
of the list 3, 2, 4, 1, 5 in increasing order.

1. Compare 2 and 3. Since 3 > 2, it places 2
in the first position. Now 2, 3, 4, 1, 5.

2. The third element 4 is inserted and
compared with 2 (4 > 2) and 3 (4 > 3). 4
is placed in the third position. Now the list
is 2, 3, 4, 1, 5

The Insertion Sort Algorithm

3. Next, find the correct place for the fourth
element, 1, among the already sorted
elements 2, 3, 4.

4. Since 1 < 2, we obtain the list 1, 2, 3, 4, 5
5. Finally, we insert 5 in to the correct

position by successively comparing it to 1,
2, 3, and 4.

6. Since 5 > 4, it goes at the end of the list,
producing the correct order.

function insertion sort (a1, a2, …, an: real
numbers with n ≥ 2)

for j = 2 to n
begin

i = i
while aj > ai

i = i + 1
m = aj

for k = 0 to j - i – 1
aj-k = aj-k-1

aj = m

end {a1, a2, …, an are sorted}

Merging Algorithm

To merge two given sorted lists L1:
a1 ≤ a2 ≤ … ≤ as, and L2: b1 ≤ b2 ≤ … ≤ bt
of lengths s and t, into a single sorted
list L3: c1≤c2≤ … ≤cs+t of length s + t,
proceed as follows:

Step 1: Set L3 equal to an empty list

Step 2: If L1 is empty, set L3 = L2 and
stop. If L2 is empty, set L3 = L1 and
stop.

Merging Algorithm

Step 3: Suppose a1 ≤ b1 then remove a1
from L1 and append it to L3 ; if this
empties L1, append the elements of
L2 to L3 and stop.

If r > 0 elements remain in L1, label
them a1, a2, … , ar in increasing
order and repeat Step 3.

Merging Algorithm

Step 3 (cont.): Suppose a1 > b1 then
remove b1 from L2 and append it to
L3 ; if this empties L2, append the
elements of L1 to L3 and stop.

If r > 0 elements remain in L2, label
them b1, b2, … , br in increasing
order and repeat Step 3.

Example: Merging Algorithm

Apply the Merging algorithm to the lists
L1: a1 a2 a3, and L2: b1 b2 b3

3 5 8 1 7 8
The lists are not empty.

Step 3: a1 = 3 > b1 = 1

Append b1 to the list L3, which was
initially empty.

Example: Merging Algorithm

Step 3 (cont.):
Relabel the remaining elements 7
and 8 of L2 as b1, b2, respectively.
The lists are

L1: a1 a2 a3, L2: b1 b2 and L3: c1

3 5 8 7 8 1

Example: Merging Algorithm

Step 3 (cont.) : a1 = 3 ≤ b1 = 7

Append a1 to the list L3, and relabel the
remaining elements 5 and 8 of L1 as a1,
a2, respectively. The lists are

L1: a1 a2, L2: b1 b2 and L3: c1 c2

5 8 7 8 1 3

Example: Merging Algorithm

Step 3 (cont.) : a1 = 5 ≤ b1 = 7

Append a1 to the list L3, and relabel the
remaining element 8 of L1 as a1. The
lists are

L1: a1, L2: b1 b2 and L3: c1 c2 c3

8 7 8 1 3 5

Example: Merging Algorithm

Step 3 (cont.) : a1 = 8 > b1 = 7

Append b1 to the list L3, and relabel the
remaining element 8 of L2 as b1. The
lists are

L1: a1, L2: b2 and L3: c1 c2 c3 c4

8 8 1 3 5 7

Example: Merging Algorithm

Step 3 (cont.) : Since a1 = 8 = b1 = 8

Append a1 to the list L3, giving

L1: L2: b1 and L3: c1 c2 c3 c4 c5

8 1 3 5 7 8

Since L1 is empty, append 8 (from L2) to L3

L3: c1 c2 c3 c4 c5 c6

1 3 5 7 8 8

Merge Sort Algorithm

To sort a list a1 , a2 , … , an into
increasing order proceed as follows:

Step 1: Set F = 0

Step 2: for i=1 to n, let the list Li be the
single element ai.

F is a flag to stop the algorithm

Merge Sort Algorithm

Step 3: While F = 0
if n = 1, set F = 1 and output L1;
if n = 2m is even

for i=1 to m
* merge the sorted list L2i-1 and L2i
and label the resulting sorted list Li;

set n = m.

F is a flag to stop the algorithm

Merge Sort Algorithm

Step 3 (cont.):
if n = 2m + 1 > 1 is odd

for i=1 to m
* merge the sorted list L2i-1 and L2i
and label the resulting sorted list Li;
* set Lm+i and Li

set n = m + 1.
end while

Example: Merge Sort Algorithm

Sort the following list
a1 a2 a3 a4 a5 a6 a7

2 9 1 4 6 5 3
Step 1: Set F = 0

Step 2: list L1, L2, L3 , L4, L5, L6, L7 are
defined, each of length 1.

L1:2 L2:9 L3 :1 L4:4 L5:6 L6:5 L7:3

Example: Merge Sort Algorithm

Step 3 :
n = 2m + 1 > 1 is odd n = 2(3) + 1, m = 3

form 4 new lists L1, L2, L3 and L4,
by merging the first six former lists in

pairs into three and adding the seventh

L1:2, 9 L2:1, 4 L3 : 6, 5 L4:3

n = m + 1 = 3 + 1 + 4

Example: Merge Sort Algorithm

Step 3 (cont.) :
n = 2m is even (n = 2(2)), m = 2

form 2 new lists L1 and L2,
by merging the 4 former lists L1, L2
and L2, L4, respectively.

L1:1, 2 , 4, 9 L2:3, 5, 6

Now n is replaced by m = 2

Example: Merge Sort Algorithm

Step 3 (cont.) :
n = 2m is even (n = 2(1)), m = 1

form 1 new list by merging the 2
former lists L1 and L2, respectively.

L1:1, 2 ,3, 4 , 5, 6, 9

Now n is replaced by m = 1. Since n = 1,
set F = 1, output L1, and stop.

Example: Merge Sort Algorithm

Example: Merge Sort Algorithm

http://www.geocities.com/SiliconValle
y/Program/2864/File/Merge1/merges
ort.html

Web with Sorting Algorithms

http://www.cs.ubc.ca/~harrison/Java
/sorting-demo.html

Complexity

There are different measures of the
efficiency of algorithms such as
time, operation counts, amount of
space to hold numbers in memory,
and others.

Example: Complexity

Find the complexity function for adding
two n-digit integers if the basic operation
is addition of single-digit integers.

Suppose the integers to be added are a =
(an-1 an-2 … a1 a0)10 and b = (bn-1 bn-2 … b1
b0)10 expressed in base 10 .

Example: Complexity

a0 the units digit of a

b0 the units digit of b

a1 the tens digits of a

b1 the tens digit of b

Example: Complexity

The units digits a + b is obtained by
adding a0 and b0 (a single operation).

To obtain the tens digit, we add a1 and
b1; then perhaps, we add 1, depending on
whether there is a carry from the previous
step.

Example: Complexity

At most two single-digit additions (two
operations) are required for the tens digits
of a + b.

Similarly, at most two operations are
required for each digit of a + b after the
units digit.

An upper bound for the number operations
is f(n) = 1 + 2(n – 1) = 2n - 1

Complexity

Most complexity problems is difficult to
obtain an exact count for the number of
single-digit additions required.

Complexity is measured in worst-case
terms.

The addition of two n-digit numbers
requires at most 2n – 1 single-digit
additions.

Complexity

Complexity based on the number of
operations that will never be exceeded.
That is the upper-bound or worst-case.

Complexity

http://www.geocities.com/SiliconValle
y/Network/1854/Sort1.html

Complexity

The time required to solve a problem
depend on:

1. the number of operations it uses.

2. The hardware used to run the program
that implements the algorithm.

Complexity

If the hardware and software change,
the time required to solve a problem of
size n can be approximated by
multiplying the previous time required
by a constant.

On a supercomputer to solve a
problem of size n a million times faster
than on a PC.

Complexity: Big-Oh Notation

Big-O notation estimates the growth of
a function without worrying about
constant multipliers or smaller order
terms.

Big-O notation does not consider the
hardware or software used to implement
the algorithm.

Complexity: Big-Oh Notation

We can assume that the different
operations used in an algorithm take the
same time, which simplifies the analysis
considerably.

Big-O notation is used to estimate the
number of operations an algorithm uses
as its input grows.

Complexity: Big-Oh Notation

We can determine whether it is practical
to use a particular algorithm to solve a
problem as the size of the input increases.

We can compare two algorithms to
determine which is more efficient as the
size of the input grows.

Complexity: Big-Oh Notation

Two algorithms for solving a problem, one
using 100n2 + 17n + 4 operations and the
other using n3 operations,

Big-O notation can help us see that the
first algorithm uses far fewer operations
when n is large, even though it uses more
operations for small values of n, such as n
= 10.

Complexity: Big-Oh Notation

Let f and g be functions N → R, f is Big
Oh of g and is written f = O(g) or
O(g(x)) if there is an integer n0 and a
positive real number c such that

|f(n)| ≤ c|g(n)| for all n ≥ n0.

This is read as “f(x) is big-oh of g(x).”

Complexity: Big-Oh Notation

We can say

“There exists an integer n0 such that
|f(n)| ≤ c|g(n)| for all n ≥ n0.”

“There exists an integer n0 such that
|f(n)| ≤ c|g(n)| for all sufficiently large n.”

Complexity: Big-Oh Notation

Instead of saying “There exists an integer
n0 such that |f(n)| ≤ c|g(n)| for all n ≥ n0.”

Say “|f(n)| ≤ c|g(n)| for all sufficiently
large n.”

If f, g: N → R. are functions that count
operations, f(n) and g(n) are positive for all
sufficiently large n, then the absolute value
symbol around them are not necessary.

Complexity: Big-Oh Notation

Let f(n) = 15n3 and g(n) = n3

|f(n)| ≤ c|g(n)| for all n ≥ n0.

With n0 = 1 and c = 15, so f = O(g)
f is Big Oh of g

Example: Big-Oh Notation

Show that f(n) = n + 1 and g(n) = n2

If n ≥ 1 , f(n) ≤ n + n = 2n

because
2n ≤ 2n2

Taking n0 = 1 c = 2 witnesses, f = O(g)

Complexity: Big-Oh Notation

Show that 7x2 is O(x3)

When x > 7, we have 7x2 < x3

The inequality is obtained by multiplying both
sides of x > 7 by x2

C = 1 and k = 7 witnesses
When x > 1, 7x2 < 7x3, so that C= 1 and k = 1
are also witnesses to the relationship

7x2 is O(x3)

Properties: Big-Oh Notation

Let f, g, f1, g1 be functions N R

a) If = O(g), then f + g = O(g)

b) If f = O(f1) and g = O(g1),
then f . g = O(f1.g1)

Complexity: Some Definitions

If f and g are functions N → R, we say
that f has smaller order than g and write
f g if and only if f = O(g), but g ≠ O(f).

If f = O(g) and g = O(f), then we say
that f and g have the same order and
write f g.

Complexity: Some Definitions

n + 1 n2 ; thus n + 1 has smaller
order than n2

15n3 n3 : 15n3 and n3 have the same
order

Complexity: Some Propositions

Let f, g be functions N → R

a) If lim f(n)/g(n) = 0, then f g
n →∞

b) If lim f(n)/g(n) = ∞, then f g
n →∞

c) If lim f(n)/g(n) = L for some number L ≠ 0,
n →∞ then f g

Complexity: Some Propositions

Suppose a and b are real numbers a < b.
Then na nb

logb n n for any real number b, b > 1

loga n logb n (two algorithm functions
with bases larger than 1 have the same
order.

Some Common Complexity Functions

“Discrete Mathematics With Graph Theory.” Third Edition, by E. G. Goodaire and M. M. Parmenter. Pearson Prentice Hall, 2006.
pag 259

Topics covered

Algorithms.

Searching and Sorting.

Complexity and Big-Oh notation

Reference

“Discrete Mathematics with
Graph Theory”, Third Edition,
E. Goodaire and Michael
Parmenter, Pearson Prentice
Hall, 2006. pp 247-280.

Reference

“Discrete Mathematics and Its
Applications”, Fifth Edition,
Kenneth H. Rosen, McGraw-
Hill, 2003. pp 120-152.

