Foundations of Discrete Mathematics

Chapters 8

By Dr. Dalia M. Gil, Ph.D.

Algorithms

\square An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.

Algorithms

\square The word algorithm evolved from the older word algorism which is a corruption of the surname of a Persian mathematician Abu Ja'far Muhammad ibn Mûsâal-Khâwrismî

Example: Algorithms

\square Describe an algorithm for finding the maximum value in a finite sequence of integers.
a) First method: Use the English language to describe the sequence of steps.
b) Second method: Use a form of pseudocode.

Example Using English Ianguage

1) Set the temporary maximum equal to the first integer in the sequence.
2) Compare the next integer in the sequence to the temporary maximum, and if it is larger than the temporary maximum, set the temporary maximum equal to this integer.

Example Using English Ianguage

3) Repeat the previous step if there are more integers in the sequence.
4) Stop when there are no integers left in the sequence. The temporary maximum at this point is the largest integer in the sequence.

Pseudocode

\square Pseudocode provides an intermediate step between an English description of an algorithm and an implementation for this algorithm in a programming language.
\square The steps of the algorithms are specified using instructions resembling those used in a programming language.

Example Using Pseudocode

function $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integers) $\max =a_{1} ; \quad \leftarrow a_{1}$ is assigned to max
for $\mathrm{i}=2$ to n
\leftarrow The loop examines all terms
if $\max <a_{i}$ then $\max =a_{i}$;
\uparrow If a term is greater than the current value of max, it will be the new max
\{Conclusion: max is the largest element\}

Properties of Algorithms

$\square \quad$ Input. An algorithm has input values from a specified set.
\square Output. From each set of input values are the solution to the problem.
\square Definiteness. The steps of an algorithm must be defined precisely.

Properties of Algorithms

\square Finiteness. An algorithm should produce the desired output after a finite (but perhaps large) number of steps for any input in the set.
\square Effectiveness. It must be possible to perform each step of an algorithm exactly and in a finite amount of time.

Properties of Algorithms

\square Generality. The procedure should be applicable for all problems of the desired form, not just for a particular set of input values.

Properties of Algorithm 1

The algorithm for finding the maximum value in a finite sequence of integers.
\square The Input is a sequence of integers
\square The Output is the largest integer in the sequence.

Properties of Algorithm 1

\square Each step of this algorithm is precisely defined, since only assignments, a finite loop, and conditional statement occur.
\square To show that the algorithm is correct when the algorithm terminates, the value of the variable max must be equal the maximum of the terms of the sequence.

Properties of Algorithm 1

\square The algorithm uses a finite number of steps, since it terminates after all the integers in the sequence have been examined.
\square The algorithm is general, since it can be used to find the maximum of any finite sequence of integers.

Example Algorithm 2

\square Describe an algorithm whose input is a list $a_{1}, a_{2}, \ldots, a_{n}$ of integers and whose output is their sum.

1. Set $S=0$;
2. for $i=1$ to n, replace S by $S+a_{i} ; \quad \leftarrow$ loop
3. Output S.
\{The value of S output at Step 3 is the desired sum\}

Algorithm translates into MATLAB

\% Input a list a1, a2, ..., an of integers and \% whose output is their sum
a = $\begin{array}{llll}5 & 17 & 3 & 6\end{array}$ 4];
$\mathrm{n}=5$;
$s=0 ;$
for $\mathrm{i}=1$: n

$$
s=s+a(i) ;
$$

end
S

Algorithm translates into C

\#include <stdio.h>
int main(void)
\{
int $a[5]=\{5,17,3,6,4\}, s, i$;
s = 0;
for ($i=0 ; i<5 ; i++$)

$$
s=s+a[i]
$$

printf("s = \%d\n", s);
return 0;
\}

Horner's Algorithm

\square Given integers $a_{0}, a_{1}, \ldots, a_{n}$ and an integer x, to evaluate the expression $a_{0}+a_{1} x+$ $a_{1} x^{2}+\ldots+a_{n} x^{n},$.

1. Set $S=a_{n}$;
2. for $\mathrm{i}=1$ to n , replace S by $\mathrm{a}_{\mathrm{n}-\mathrm{i}}+\mathrm{Sx} ; \leftarrow$ loop
3. Output S.
\{The value of S is the desired number $a_{0}+$ $\left.a_{1} x+a_{1} x^{2}+\ldots+a_{n} x^{n}\right\}$

Example of Horner's Algorithm

\square Given $f(x)=-1+2 x+4 x^{2}-3 x^{3}$ and $x=5$

1. Set $S=a_{3}=-3$

$$
n=3
$$

$$
a_{n-i}+S x
$$

1. $i=1$: replace S by $a_{2}+S x=4-3(5)=-11$ $i=2$: replace S by $a_{1}+S x=2-11(5)=-53$
$\mathrm{i}=3$: replace S by $\mathrm{a}_{0}+S x=-1-53(5)=-266$.
Since $i=n=3$, Step 2 is complete.
2. Output $S=-266$

Example with MATLAB

$$
\begin{aligned}
& \text { \%Horner's Algorithm } \\
& \% \text { Evaluate } f(x)=-1+2 x+4 x^{\wedge} 2-3 x^{\wedge} 3, x=5 \\
& a=\left[\begin{array}{ll}
-1 & 24-3
\end{array}\right] \\
& x=5 ; \\
& n=4 \\
& s=a(n) \\
& \text { for } i=1: 4 \\
& \quad \text { if }(n-i)==0, \text { break, end } \\
& s=a(n-i)+s^{*} x ; \\
& \text { end } \\
& s
\end{aligned}
$$

Example with C language

```
// Horner's Method
#include <stdio.h>
int main (void)
{
        int a[] = {-1, 2, 4,-3},x =5,i, s;
        s = a[3] = -3;
        for (i=1; i<=3; i++)
        s=a[3-i]+ s*x ;
printf("S = %d\n", s);
    return 0;
}
```


Example Algorithm

ㅁ Describe an algorithm that, upon input of a list $a_{1}, a_{2}, \ldots, a_{n}$, output it.

1. output a_{1};
2. if $n=1$, stop; else for $\mathrm{i}=2$ to n ,
if a_{i} does not equal any of $a_{1}, a_{2}, \ldots, a_{n}$
The algorithms outputs the distinct items among $a_{1}, a_{2}, \ldots, a_{n}$

Searching Algorithms

\square The problem of locating an element in an ordered list occurs in many context and are called searching problems.

The General Searching Problem

- Locate an element x in a list of distinct elements $a_{1}, a_{2}, \ldots, a_{n}$, or determine that it is not in the list.
\square The solution to this search problem is the location of the term in the list that equals x (that is, i is the solution if $x=a_{i}$) and is 0 if x is not in the list.

Some Searching Algorithms

\square The linear search or sequential search algorithm.
\square The binary search algorithm

The Linear Search Algorithm

\square Begins by comparing x and a_{1}, when $x=a_{1}$, the solution is the location of a_{1}, namely 1 .
\square When $x \neq a_{1}$, compare a_{1} with a_{2}. If $x=a_{2}$, the solution is the location of a_{2}, namely 2 .

The Linear Search Algorithm

\square When $x \neq a_{2}$, compare a_{1} with a_{3}. Continue this process, comparing x successively with each term of the list until a match is found, where the solution is the location of that term.
\square Unless no match occurs. If the entire list has been searched without locating x, the solution is 0 .

The Linear Search Algorithm (1)

to search a list $a_{1}, a_{2}, \ldots, a_{n}$ for the element x
i = 1
while ($i \leq n$ and $x \neq a 1$)

$$
i=i+1
$$

if $\mathrm{i} \leq \mathrm{n}$ then location $=\mathrm{i}$
else location $=0$
\{location is the subscript of the term that equals x, or is 0 if x is not found\}

The Linear Search Algorithm (2)

to search a list $a_{1}, a_{2}, \ldots, a_{n}$ for the element x for $\mathrm{i}=1$ to n
if $x=a_{i}$, output "true" and set $i=2 n$;
if $i \neq 2 n$, output "false."

Setting $i=2 n$ is a little trick that stops the loop as soon as x has been found and, if x is not in the list, ensures that "false" is output at the end.

For $x=-2$ and a list $a_{1}=6, a_{2}=0, a_{3}=-2$, and $a_{4}=1$
set $i=1, x \neq a_{1}=6$,
set $i=2, x \neq a_{2}=0$,
Since $i=a_{3}=-2$, it outputs "true" and
Sets $\mathrm{i}=2 \mathrm{n}=8$.
Since i is no longer in the range from 1 to n, the loops stops.

For $x=2$ and a list $a_{1}=6, a_{2}=0, a_{3}=-2$, and $a_{4}=1$
set $\mathrm{i}=1, \quad x \neq \mathrm{a}_{1}=6$,
set $i=2, x \neq a_{2}=0$,
set $i=3, x \neq a_{3}=-2$,
set $i=4, x \neq a_{4}=1$,
$\mathrm{i}=4 \neq 2 \mathrm{n}$, so the algorithm outputs "false."

The Binary Search Algorithm

ㅁ Binary algorithm is used when the list has terms occurring in order of increasing size.
\square If the terms are numbers, they are listed from smallest to largest; if they are words are listed lexicographic, or alphabetic order.

The Binary Search Algorithm

ㅁ It proceeds by comparing the element to be located to the middle term of the list.
\square The list then is split into two smaller sublists of the same size, or where one of these smaller has one fewer term than the other.

The Binary Search Algorithm

\square The search continue by restricting the search to the appropriate sublist based on the comparison of the element to be located and the middle term.

The Binary Search Algorithm

\square To search for 19 in the list

$$
1235678101213151618192022
$$

\square First split the list, which has 16 terms, into two smaller list with eight terms each, namely

$$
123567810 \quad 1213151618192022
$$

The Binary Search Algorithm

\square Then, compare 19 and the largest term in the first list. Since $10<19$, the first list is disregarded.
$\square \quad$ The second list 1213151618192022 is split in two smaller lists of four terms each

```
12131516
18192022
```


The Binary Search Algorithm

\square Since $16<19$, the first list is disregarded, and the search is restricted to the second of these lists 18192022
\square The, this list is split in two smaller lists of two terms each

$$
1819 \quad 2022
$$

The Binary Search Algorithm

\square Since 19 is not greater than the largest term of the first of these two list, which is also 19 ,

- the search is restricted to the first list: 18,19 which contains the $13^{\text {th }}$. And $14^{\text {th }}$. Terms of the original list.

The Binary Search Algorithm

\square Then list is split in two lists of one term each: 18 and 19. Since $18<19$, the search is restricted to the second list containing the $14^{\text {th }}$ term of the original list, which is 19.
\square Now the search has been narrowed down to one term, a comparison is made, and 19 is located as the $14^{\text {th }}$. term in the original list.

The Binary Search Algorithm

\square Begins by comparing x with middle term of the sequence, a_{m}, where $m=\lfloor(n+1) / 2\rfloor$.
\square Note: $\lfloor x\rfloor$ is the greatest integer not exceeding x.

The Binary Search Algorithm

\square If $x>a_{m}$, The search for x can be restricted to the second half of the sequence, which is $a_{m+1}, a_{m+2}, \ldots, a_{n}$.
\square If x is not greater than a_{m}, the search for x can be restricted to the first half of the sequence, which is $a_{1}, a_{2}, \ldots, a_{m}$.

The Binary Search Algorithm

\square The search has now been restricted to a list with no more than $\lceil\mathrm{n} / 2\rceil$ elements.
\square Note: $\lceil x\rceil$ is the smallest integer term of the restricted list.

The Binary Search Algorithm

ㅁ Then restrict the search to the first or second half of the list.
\square Repeat this process until the list with one term is obtained.
\square Then determine whether this term is x.

The Linear Search Algorithm

\square Begins by comparing x and a_{1}, when $x=a_{1}$, the solution is the location of a_{1}, namely 1 .
\square When $x \neq a_{1}$, compare a_{1} with a_{2}. If $x=a_{2}$, the solution is the location of a_{2}, namely 2 .

To search for an element x in an ordered list $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ proceed as follows

$\mathrm{i}=1 \quad\{\mathrm{i}$ is left endpoint of search interval\}
$\mathrm{j}=\mathrm{n} \quad\{\mathrm{j}$ is right endpoint of search interval\}
while ($\mathrm{i}<\mathrm{j}$)
begin $m=\lfloor(i+j) / 2\rfloor$
$i=i+1$
if $x>a_{m}$ then $i=m+1$ else $j=m$
end
if $x=a_{i}$ then location $=i$ else location $=0$
\{location is the subscript of the term equals x \}

To search for an element x in an ordered list $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ proceed as follows
while $\mathrm{n}>0$
if $n=1$ then
if $x=a_{1}$ output "true" and set $n=0$;
else output false and set $\mathrm{n}=1$;
else
set $m=\lfloor n / 2\rfloor$;
if $x \leq a_{m}$ replace the current list with a_{1}, \ldots, a_{m} and set $n=m$;
else replace the current list with a_{m+1}, \ldots, a_{n} and replace n by $n-m$.
end

Sorting

\square Ordering the elements of a list is a problem that occurs in many contexts.

- A sorting is putting the elements into a list in which the elements are in creasing order.

Sorting

\square Sorting the list 7, 2, 1, 4, 5, 9 produces the list $1,2,4,5,7,9$
\square Sorting the list d, h, c, a, f (using alphabetic order) produces the list a, c, d, f, h.

Sorting

\square Some algorithms are easier to implement.

- Some algorithms are more efficient.

ㅁ Some algorithms take advantages of particular computer architectures.
\square Some algorithms are particular clever.

Some Sorting Algorithms

\square The bubble sort algorithm.
\square The insertion sort algorithm.

The Bubble Sort Algorithm

\square The bubble sort algorithm is one of the simplest sorting algorithms, but not one of the most efficient.
\square It put a list into increasing order by successively comparing adjacent elements, interchanging them if they are in the wrong order.

The Bubble Sort Algorithm

\square To carry out the bubble sort algorithm, the basic operation is interchange a large element with a smaller one following it, starting at the beginning of the list., for a full pass.
\square This process is repeated until the sort is complete.

The Bubble Sort Algorithm

(an interchange
(: pair in correct order
numbers in color
guaranteed to be in correct order

The Bubble Sort Algorithm

\square http://www.cs.bme.hu/~gsala/alg_an ims/3/bsort-e.html

The Bubble Sort Algorithm

function bubblesort $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for $\mathrm{j}=1$ to n - i if $a_{j}>a_{j+1}$ then interchange a_{j} and a_{j+1}
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right.$ is increasing order $\}$

The Bubble Sort Algorithm

To sort n elements $a_{1}, a_{2}, \ldots, a_{n}$ from least to greatest
for $\mathrm{i}=\mathrm{n}-1$ down to 1
for $\mathrm{j}=1$ to i
if $a_{j}>a_{j+1}$ swap a_{j} and a_{j+1}
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right.$ is increasing order $\}$

The Insertion Sort Algorithm

\square The insertion sort is a simple sorting algorithm, but it is usually not the most efficient.

- To sort a list with n elements, the insertion sort begins with the second element.

The Insertion Sort Algorithm

\square The insertion sort compares this second element with the first element and insert if before the first element.
\square If it does not exceed the first element and after the first element if it exceeds the first element.

The Insertion Sort Algorithm

\square The third element is then compared with the first element, and if it is larger than the first element,

- It is compared with the second element; it is inserted into the correct position among the first three elements.

The Insertion Sort Algorithm

- In general, in the jth step of the insertion sort, the jth element of the list is inserted into the correct position in the list of the previously sorted j-1 elements.
\square To insert the jth element in the list, a linear search technique is used;

The Insertion Sort Algorithm

\square the jth element is successively compared with the already sorted j-1 elements at the start of the list until the first element that is not less than this element is found
\square or until it has been compared with all $\mathrm{j}-1$ elements; the jth element is inserted in the correct position so that the first j elements are sorted.

The Insertion Sort Algorithm

\square Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing order.

1. Compare 2 and 3 . Since $3>2$, it places 2 in the first position. Now 2, 3, 4, 1, 5.
2. The third element 4 is inserted and compared with $2(4>2)$ and $3(4>3) .4$ is placed in the third position. Now the list is $2,3,4,1,5$

The Insertion Sort Algorithm

3. Next, find the correct place for the fourth element, 1 , among the already sorted elements 2, 3, 4.
4. Since $1<2$, we obtain the list $1,2,3,4,5$
5. Finally, we insert 5 in to the correct position by successively comparing it to 1 , 2,3 , and 4 .
6. Since $5>4$, it goes at the end of the list, producing the correct order.
function insertion sort $\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: real numbers with $n \geq 2$)
for $\mathrm{j}=2$ to n
begin

$$
\begin{aligned}
& i=i \\
& \text { while } a_{j}>a_{i} \\
& \qquad \quad i=i+1 \\
& m=a_{j} \\
& \text { for } k=0 \text { to } j-i-1 \\
& \quad a_{j-k}=a_{j-k-1} \\
& a_{j}=m
\end{aligned}
$$

end $\left\{a_{1}, a_{2}, \ldots, a_{n}\right.$ are sorted $\}$

Merging Algorithm

\square To merge two given sorted lists L_{1} : $a_{1} \leq a_{2} \leq \ldots \leq a_{s}$, and $L_{2}: b_{1} \leq b_{2} \leq \ldots \leq b_{t}$ of lengths s and t, into a single sorted list $L_{3}: \mathrm{c}_{1} \leq \mathrm{c}_{2} \leq \ldots \leq \mathrm{c}_{\mathrm{s}+\mathrm{t}}$ of length $\mathrm{s}+\mathrm{t}$, proceed as follows:
Step 1: Set L_{3} equal to an empty list
Step 2: If L_{1} is empty, set $L_{3}=L_{2}$ and stop. If L_{2} is empty, set $L_{3}=L_{1}$ and stop.

Merging Algorithm

Step 3: Suppose $a_{1} \leq b_{1}$ then remove a_{1} from L_{1} and append it to L_{3}; if this empties L_{1}, append the elements of L_{2} to L_{3} and stop.

If $r>0$ elements remain in L_{1}, label them $a_{1}, a_{2}, \ldots, a_{r}$ in increasing order and repeat Step 3.

Merging Algorithm

Step 3 (cont.): Suppose $a_{1}>b_{1}$ then remove b_{1} from L_{2} and append it to L_{3}; if this empties L_{2}, append the elements of L_{1} to L_{3} and stop.

If $r>0$ elements remain in L_{2}, label them $b_{1}, b_{2}, \ldots, b_{r}$ in increasing order and repeat Step 3.

Example: Merging Algorithm

\square Apply the Merging algorithm to the lists

$$
\begin{array}{ccccc}
\left.L_{1}: \begin{array}{ccccc}
a_{1} & a_{2} & a_{3}, & \text { and } & L_{2}: \\
3 & 5 & b_{1} & b_{2} & b_{3} \\
1 & 7 & 8
\end{array}\right)
\end{array}
$$

\square The lists are not empty.
Step 3: $a_{1}=3>b_{1}=1$
Append b_{1} to the list L_{3}, which was initially empty.

Example: Merging Algorithm

Step 3 (cont.):
Relabel the remaining elements 7 and 8 of L_{2} as b_{1}, b_{2}, respectively. The lists are

$$
\begin{array}{rcccccc}
\mathrm{L}_{1}: \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}, & \mathrm{~L}_{2}: \mathrm{b}_{1} & \mathrm{~b}_{2} & \text { and } & \mathrm{L}_{3}: \mathrm{c}_{1} \\
3 & 5 & 8 & 7 & 8 & & 1
\end{array}
$$

Example: Merging Algorithm

\square Step 3 (cont.) : $a_{1}=3 \leq b_{1}=7$
Append a_{1} to the list L_{3}, and relabel the remaining elements 5 and 8 of L_{1} as a_{1}, a_{2}, respectively. The lists are

$$
\begin{array}{cccccc}
L_{1}: & a_{1} & a_{2}, & L_{2}: & b_{1} & b_{2} \\
5 & 8 & 7 & \text { and } & L_{3}: & c_{1} \\
c_{2} \\
& 1 & 1
\end{array}
$$

Example: Merging Algorithm

\square Step 3 (cont.) : $a_{1}=5 \leq b_{1}=7$ Append a_{1} to the list L_{3}, and relabel the remaining element 8 of L_{1} as a_{1}. The lists are

$$
\begin{array}{cccccc}
\mathrm{L}_{1}: \mathrm{a}_{1}, & \mathrm{~L}_{2}: \mathrm{b}_{1} & \mathrm{~b}_{2} & \text { and } & \mathrm{L}_{3}: \mathrm{c}_{1} & \mathrm{c}_{2} \\
8 & \mathrm{c}_{3} \\
8 & 8 & & 1 & 3 & 5
\end{array}
$$

Example: Merging Algorithm

\square Step 3 (cont.) : $a_{1}=8>b_{1}=7$ Append b_{1} to the list L_{3}, and relabel the remaining element 8 of L_{2} as b_{1}. The lists are

$$
\begin{array}{ccccccc}
\mathrm{L}_{1}: \mathrm{a}_{1}, & \mathrm{~L}_{2}: \mathrm{b}_{2} & \text { and } & \mathrm{L}_{3}: \mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3} & \mathrm{c}_{4} \\
8 & 8 & 1 & 3 & 5 & 7
\end{array}
$$

Example: Merging Algorithm

\square Step 3 (cont.) : Since $a_{1}=8=b_{1}=8$ Append a_{1} to the list L_{3}, giving
$\begin{array}{lllllllll}\mathrm{L}_{1}: & \mathrm{L}_{2}: & \mathrm{b}_{1} & \text { and } & \mathrm{L}_{3}: & \mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3} & \mathrm{c}_{4} \\ 8 & \mathrm{c}_{5} \\ & 8 & & 1 & 3 & 5 & 7 & 8\end{array}$
Since L_{1} is empty, append 8 (from L_{2}) to L_{3}

$$
\begin{array}{lcccccc}
L_{3}: & c_{1} & C_{2} & C_{3} & c_{4} & C_{5} & c_{6} \\
& 1 & 3 & 5 & 7 & 8 & 8
\end{array}
$$

Merge Sort Algorithm

\square To sort a list $a_{1}, a_{2}, \ldots, a_{n}$ into increasing order proceed as follows:

Step 1: Set $\mathrm{F}=0 \quad \leftarrow \mathrm{~F}$ is a flag to stop the algorithm
Step 2: for $\mathrm{i}=1$ to n , let the list L_{i} be the single element a_{i}.

Merge Sort Algorithm

Step 3: While $F=0 \leftarrow F$ is a flag to stop the algorithm

$$
\text { if } n=1 \text {, set } F=1 \text { and output } L_{1} \text {; }
$$

if $n=2 m$ is even
for $\mathrm{i}=1$ to m

* merge the sorted list $L_{2 i-1}$ and $L_{2 i}$ and label the resulting sorted list L_{i}; set $n=m$.

Merge Sort Algorithm

Step 3 (cont.):
if $n=2 m+1>1$ is odd for $\mathrm{i}=1$ to m

* merge the sorted list $L_{2 i-1}$ and $L_{2 i}$ and label the resulting sorted list L_{i};
* set L_{m+i} and L_{i}
set $n=m+1$.
end while

Example: Merge Sort Algorithm

\square Sort the following list

$$
\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\
2 & 9 & 1 & 4 & 6 & 5 & 3
\end{array}
$$

Step 1: Set F = 0
Step 2: list $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}, L_{7}$ are defined, each of length 1 .
$L_{1}: 2 \quad L_{2}: 9 \quad L_{3}: 1 \quad L_{4}: 4 \quad L_{5}: 6 \quad L_{6}: 5 \quad L_{7}: 3$

Example: Merge Sort Algorithm

Step 3 :
$\mathrm{n}=2 \mathrm{~m}+1>1$ is odd $\mathrm{n}=2(3)+1, \mathrm{~m}=3$
form 4 new lists L_{1}, L_{2}, L_{3} and L_{4},
by merging the first six former lists in pairs into three and adding the seventh
$L_{1}: 2,9 \quad L_{2}: 1,4 \quad L_{3}: 6,5 \quad L_{4}: 3$
$\mathrm{n}=\mathrm{m}+1=3+1+4$

Example: Merge Sort Algorithm

Step 3 (cont.) :
$n=2 m$ is even $(n=2(2)), m=2$
form 2 new lists L_{1} and L_{2}, by merging the 4 former lists L_{1}, L_{2} and L_{2}, L_{4}, respectively.

$$
L_{1}: 1,2,4,9 \quad L_{2}: 3,5,6
$$

Now n is replaced by $m=2$

Example: Merge Sort Algorithm

Step 3 (cont.) :
$n=2 m$ is even ($n=2(1)$), $m=1$
form 1 new list by merging the 2 former lists L_{1} and L_{2}, respectively.

$$
L_{1}: 1,2,3,4,5,6,9
$$

Now n is replaced by $m=1$. Since $n=1$, set $F=1$, output L_{1}, and stop.

Example: Merge Sort Algorithm

Example: Merge Sort Algorithm

\square http://www.geocities.com/SiliconValle y/Program/2864/File/Mergel/merges ort.html

Web with Sorting Algorithms

- http://www.cs.ubc.ca/~harrison/Java /sorting-demo.html

Complexity

\square There are different measures of the efficiency of algorithms such as time, operation counts, amount of space to hold numbers in memory, and others.

Example: Complexity

\square Find the complexity function for adding two n-digit integers if the basic operation is addition of single-digit integers.
\square Suppose the integers to be added are $a=$ $\left(a_{n-1} \quad a_{n-2} \ldots a_{1} a_{0}\right)_{10}$ and $b=\left(\begin{array}{llll}b_{n-1} & b_{n-2} & \ldots & b_{1}\end{array}\right.$ $\left.\mathrm{b}_{0}\right)_{10}$ expressed in base 10 .

Example: Complexity

$\square a_{0} \leqslant$ the units digit of a
$\square b_{0} \leftarrow$ the units digit of b
$\square a_{1} \leftarrow$ the tens digits of a
$\square b_{1} \leftarrow$ the tens digit of b

Example: Complexity

\square The units digits $a+b$ is obtained by adding a_{0} and b_{0} (a single operation).
\square To obtain the tens digit, we add a_{1} and b_{1}; then perhaps, we add 1 , depending on whether there is a carry from the previous step.

Example: Complexity

\square At most two single-digit additions (two operations) are required for the tens digits of $a+b$.

- Similarly, at most two operations are required for each digit of $a+b$ after the units digit.
\square An upper bound for the number operations is $f(n)=1+2(n-1)=2 n-1$

Complexity

\square Most complexity problems is difficult to obtain an exact count for the number of single-digit additions required.
\square Complexity is measured in worst-case terms.
\square The addition of two n-digit numbers requires at most $2 n-1$ single-digit additions.

Complexity

\square Complexity based on the number of operations that will never be exceeded. That is the upper-bound or worst-case.

Complexity

\square http://www.geocities.com/SiliconValle y/Network/1854/Sort1.html

Complexity

\square The time required to solve a problem depend on:

1. the number of operations it uses.
2. The hardware used to run the program that implements the algorithm.

Complexity

\square If the hardware and software change, the time required to solve a problem of size n can be approximated by multiplying the previous time required by a constant.

ㅁ On a supercomputer to solve a problem of size n a million times faster than on a PC.

Complexity: Big-Oh Notation

\square Big-O notation estimates the growth of a function without worrying about constant multipliers or smaller order terms.
\square Big-O notation does not consider the hardware or software used to implement the algorithm.

Complexity: Big-Oh Notation

\square We can assume that the different operations used in an algorithm take the same time, which simplifies the analysis considerably.
\square Big-O notation is used to estimate the number of operations an algorithm uses as its input grows.

Complexity: Big-Oh Notation

\square We can determine whether it is practical to use a particular algorithm to solve a problem as the size of the input increases.
\square We can compare two algorithms to determine which is more efficient as the size of the input grows.

Complexity: Big-Oh Notation

\square Two algorithms for solving a problem, one using $100 n^{2}+17 n+4$ operations and the other using n^{3} operations,
\square Big-O notation can help us see that the first algorithm uses far fewer operations when n is large, even though it uses more operations for small values of n, such as n $=10$.

Complexity: Big-Oh Notation

\square Let f and g be functions $N \rightarrow R$, f is Big Oh of g and is written $f=O(g)$ or $O(g(x))$ if there is an integer n_{0} and \underline{a} positive real number c such that

$$
|f(n)| \leq c|g(n)| \text { for all } n \geq n_{0} \text {. }
$$

This is read as " $f(x)$ is big-oh of $g(x) . "$

Complexity: Big-Oh Notation

We can say
"There exists an integer n_{0} such that $|f(n)| \leq c|g(n)|$ for all $n \geq n_{0}$."
"There exists an integer n_{0} such that $|f(n)| \leq c|g(n)|$ for all sufficiently large n."

Complexity: Big-Oh Notation

- Instead of saying "There exists an integer n_{0} such that $|\mathrm{f}(\mathrm{n})| \leq \mathrm{c}|\mathrm{g}(\mathrm{n})|$ for all $\mathrm{n} \geq \mathrm{n}_{0}$."
\square Say " $|f(n)| \leq c|g(n)|$ for all sufficiently large n."
- If $f, g: N \rightarrow R$. are functions that count operations, $f(n)$ and $g(n)$ are positive for all sufficiently large n, then the absolute value symbol around them are not necessary.

Complexity: Big-Oh Notation

\square Let $f(n)=15 n^{3}$ and $g(n)=n^{3}$

$$
|f(n)| \leq c|g(n)| \text { for all } n \geq n_{0} \text {. }
$$

\square With $n_{0}=1$ and $c=15$, so $f=O(g)$
f is Big Oh of g

Example: Big-Oh Notation

\square Show that $f(n)=n+1$ and $g(n)=n^{2}$

$$
\text { If } n \geq 1, f(n) \leq n+n=2 n
$$

because

$$
2 n \leq 2 n^{2}
$$

Taking $\mathrm{n}_{0}=1 \mathrm{c}=2 \leftarrow$ witnesses, $\mathrm{f}=\mathrm{O}(\mathrm{g})$

Complexity: Big-Oh Notation

\square Show that $7 x^{2}$ is $O\left(x^{3}\right)$
When $x>7$, we have $7 x^{2}<x^{3}$
The inequality is obtained by multiplying both sides of $x>7$ by x^{2}
$C=1$ and $k=7 \leftarrow$ witnesses
When $x>1,7 x^{2}<7 x^{3}$, so that $C=1$ and $k=1$ are also witnesses to the relationship

$$
7 x^{2} \text { is } O\left(x^{3}\right)
$$

Properties: Big-Oh Notation

\square Let f, g, f_{1}, g_{1} be functions $N \rightarrow R$
a) If $=\mathbf{O}(\mathbf{g})$, then $\mathrm{f}+\mathrm{g}=\mathbf{O}(\mathrm{g})$
b) If $f=\begin{array}{r}O\left(f_{1}\right) \text { and } g=O\left(g_{1}\right), \\ \\ \text { then } f . g=O\left(f_{1} \cdot g_{1}\right)\end{array}$

Complexity: Some Definitions

- If f and g are functions $N \rightarrow R$, we say that f has smaller order than g and write $f<g$ if and only if $f=O(g)$, but $g \neq O(f)$.
\square If $f=O(g)$ and $g=O(f)$, then we say that f and g have the same order and write $\mathrm{f} \simeq \mathrm{g}$.

Complexity: Some Definitions

$\square n+1<n^{2}$; thus $n+1$ has smaller order than n^{2}

ㅁ $15 n^{3} \asymp n^{3}: 15 n^{3}$ and n^{3} have the same order

Complexity: Some Propositions

\square Let f, g be functions $N \rightarrow R$
a) If $\lim f(n) / g(n)=0$, then $f<g$

$$
\mathrm{n} \rightarrow \infty
$$

b) If $\lim f(n) / g(n)=\infty$, then $f<g$

$$
n \rightarrow \infty
$$

c) If $\lim f(n) / g(n)=L$ for some number $L \neq 0$, $n \rightarrow \infty$ then $f \approx g$

Complexity: Some Propositions

\square Suppose a and b are real numbers $a<b$. Then $\mathrm{n}^{\mathrm{a}}<\mathrm{n}^{\text {b }}$
$\square \log _{\mathrm{b}} \mathrm{n}<\mathrm{n}$ for any real number $\mathrm{b}, \mathrm{b}>1$
$\square \log _{\mathrm{a}} \mathrm{n} \asymp \log _{\mathrm{b}} \mathrm{n}$ (two algorithm functions with bases larger than 1 have the same order.

Some Common Complexity Functions

$$
10
$$

Topics covered

\square Algorithms.
\square Searching and Sorting.
\square Complexity and Big-Oh notation

Reference

- "Discrete Mathematics with Graph Theory", Third Edition, E. Goodaire and Michael Parmenter, Pearson Prentice Hall, 2006. pp 247-280.

Reference

\square "Discrete Mathematics and Its Applications", Fifth Edition, Kenneth H. Rosen, McGrawHill, 2003. pp 120-152.

