Foundations of Discrete Mathematics
 COT 2104
 Chapter 10 (Answer Review)

1. A walk in a graph is a trail in which all edges are distinct.
a. True
b. False x
2. A path is a walk in which all vertices are distinct.
a. True x
b. False
3. A trail is a path.
a. True
b. False x
4. A path is a trail.
a. True x
b. False
5. A cycle is a special type of circuit.
a. True x
b. False
6. A cycle is a circuit with no repeated edges.
a. True
b. False x
7. An Eulerian circuit is a cycle.
a. True
b. False x
8. All edges in a circuit must be distinct.
a. True x
b. False
9. A subgraph of a connected graph must be connected.
a. True
b. False x
10. K_{8} is Eulerian.
a. True
b. False x
11. $K_{8,10}$ is Eulerian.
a. True x
b. False
12. A pseudograph that possesses an Eulerian trail has exactly two odd vertices.
a. True x
b. False
13. A Hamiltonian cycle is a circuit.
a. True x
b. False
14. K_{8} is Hamiltonian.
a. True x
b. False
15. $\mathrm{K}_{8,10}$ is Hamiltonian.
a. True x
b. False
16. A graph with more than one component cannot be Hamiltonian x
a. True
b. False
17. A graph that contains a proper cycle cannot be Hamiltonian.
a. True x
b. False
$\begin{aligned} & \text { 18. The matrix } \mathrm{A} \text { is the adjacency matrix } \\ & \text { of a graph. } \\ & \text { a. True } \mathrm{A}\end{aligned} \mathrm{A}=\left[\begin{array}{lll}\mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0}\end{array}\right]$
b. False
18. The matrix A is the adjacency matrix of a graph.
a. True x
b. False

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

20. If a graph G has adjacency the matrix A, there are two walks from v1 back to itself that include two edges.
a. True x
b. False

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

21. In a weighted graph, it is possible that some edges might have weight 0.
a. True x
b. False
22. The Traveling Salesman Problem is the problem of finding a maximum Hamiltonian cycle in a weighted (Hamiltonian) graph.
a. True x
b. False
23. In the weighted graph the shortest path between A and E is ADE.
a. True
b. False x

24. In the weighted graph the shortest path between C and D is CED.
a. True x
b. False

25. Dijkstra's algorithm (original version), when used to find a shortest path from vertex A to vertex E , terminates if E is assigned a label.
a. True x
b. False
26. Dijkstra's algorithm (improved version), when used to find a shortest path from vertex A to vertex E, terminates if E is assigned a label.
a. True x
b. False
