1. Given the table for f(x),

x	f(x)
3	-1
4	2
5	10

Construct a **table** using your shifting rules that describes each of the new translated functions. You need not show a graph.

a.) f(x) + 5

) (**	,
Х	14_
3	<u> </u>
4	7
5	15

Add 5 to 4'5

6

b.) f	(-2x)
Х	14_
-3/2	-/
-2	ଷ
-5/21	10

(6) c.) f(x+4)

2. Given the graph of f(x). Assume each tick mark is one unit.

- a.) Determine if the function is one-to-one. Explain why.
- (No, it fails the HLT.
 - b.) How has the function been shifted from its standard graph?
- (b)
- Left 2
- c.) Sketch a graph of the inverse.

3. Given $f(x) = \frac{1}{x}$ and $g(x) = \sqrt[3]{x+2}$. Find the following.

(b) a.)
$$(f+g)(x) = \frac{1}{X} + \sqrt[3]{x+2}$$

(b)
$$(f/g)(x) = \frac{\frac{1}{x}}{\sqrt[3]{x+2}} = \frac{1}{x\sqrt[3]{x+2}}$$

$$(b) c.) (f \circ g)(x) = \frac{1}{\sqrt[3]{x+2}}$$

$$(b) d.) (g \circ f)(x) = \sqrt[3]{\frac{1}{x} + 2}$$

(i) e.) Find
$$g^{-1}(x)$$
. $\chi^3 = \left(\sqrt[3]{\gamma+2}\right)^3$

$$\frac{\chi^3 = \gamma+2}{\chi^3-2 = \gamma = g^{-1}(\chi)}$$

4. Given the tables for f(x) and g(x). Find the following.

x	f(x)
-1	3
2	-2
8	0

\boldsymbol{x}	g(x)
-2	3
2	8
5	-2

$$\frac{x | 9'(x)}{3|-2}$$

(b)
$$g^{-1}(-2) = 5$$

- 5. Solve $2x^2 5x 3 > 0$.
- a.) Algebraically.

8

a.) Algebraically.

(1)
$$(2 \times + 1)(\times -3) = 0$$

$$2 \times + 1 = 0 \times -3 = 0$$

$$\times = -\frac{1}{2} \times -3$$

$$\times = 5 \pm \sqrt{25 + 24}$$

- $\begin{pmatrix} \chi_{2} \frac{1}{2} & 0 \times 73 \\ (-\omega_{1} \frac{1}{2}) & 0 & (3, \infty) \end{pmatrix}$
 - 6. The total revenue for a certain product is given by R(x) = 640x dollars and the total cost is $C(x) = 30,000 + 40x + x^2$ dollars where x is the number of units produced or sold. When is the profit at least \$30,000? Solve by a method of your choice, but remember to show work.

$$P = R - C = 640 \times - (30,000 + 40 \times + x^{2})$$

$$P = -30,000 + 600 \times - x^{2}$$

$$-30,000 + 600 \times - x^{2} = 30,000$$

$$0 \ge x^{2}$$

$$0 = 1$$

$$(126.19,3000)$$

$$(473.21,3000)$$

$$x = 600$$

$$0 \ge x^{2} - 600x + 60,000$$

$$0 = 1 \quad b = -600 \quad (= 60,000)$$

$$x = -(-600) \pm \sqrt{(-600)^{2} - 4(1)(60,000)}$$

$$x = 600 \pm \sqrt{360000} - 240000$$

$$x = 600 \pm \sqrt{120000}$$

$$x = 473.21, 126.79$$