

Show all work for credit. If the problem specifies you to use a particular method, you must show the work accordingly. If the problem does not specify you to use a particular method, you may use any appropriate method to solve. However, you still must show your work for credit.

1. a. Complete the table for the graphs of $f(x)=4^{x}$ and $f(x)=4^{x}-2$.

x	$f(x)=4^{x}$	$f(x)=4^{x}-2$
-2	$4^{-2}=\frac{1}{16}=.0625$	-1.9375
-1	$4^{-1}=\frac{1}{4}=.25$	-1.75
0	$4^{0}=1$	-1
1	$4^{1}=4$	2
2	$4^{2}=16$	14

b. How has the graph of $f(x)=4^{x}-2$ changed in comparison to the standard graph of
$f(x)=4^{x}$?

c. Complete the table for the graph of $f(x)=\log _{4} x$.

x	$f(x)=\log _{4} x$
$4^{-2}=\frac{1}{16}$	-2
$4^{-1}=\frac{1}{4}$	-1
$4^{0}=1$	0
$4^{1}=4$	1
$4^{2}=16$	2

$$
4^{y}=x
$$

d. Sketch the graphs of $f(x)=4^{x}, f(x)=4^{x}-2$, and $f(x)=\log _{4} x$ on the same axis.

e. In part d, which two functions are inverses and how do you know?

$$
\begin{aligned}
& y=4^{x} \text { and } y=\log _{4} x \\
& \text { are symmetric writ the } y=x \text { line. }
\end{aligned}
$$

2. a. Solve $5^{x^{2}-x-4}=25$ algebraically.

$$
\begin{aligned}
& 5^{x^{2}-x-4}=5^{2} \\
& x^{2}-x-4=2 \\
& x^{2}-x-6=0 \\
& (x+2)(x-3)=0 \\
& x=-2 \quad x=3
\end{aligned}
$$

b. Solve $5^{x^{2}-x-4}=25$ graphically.

3. A color TV loses 30% of its value every 2 years. The value of a TV set t years after it was purchased for $\$ 700$ is given by the function $V(t)=700(0.7)^{t / 2}$. Calculate the value of the TV in 5 years. \& value

$$
\begin{aligned}
& V(5)=700(.7)^{5 / 2}=4 \\
& 286.97 \\
& 700(.7) 1(5 / 2)
\end{aligned}
$$

4. Simplify each of the following.
a. $\log _{3} 81=4$

$$
3^{?}=81
$$

b. $\log _{10} \frac{1}{1000}=-3$

$$
10^{?}=\frac{1}{1000}
$$

c. $\log _{8} 2=$

$$
8^{?}=2
$$

d. $\ln e^{4}=4$

$$
e^{?}=e^{4}
$$

5. Suppose that $\$ 6000$ is invested at 7% interest compounded annually. Find the future value of the investment at the end of 10 years. $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& P=6000 \\
& r=.07 \\
& n=1 \\
& t=10
\end{aligned}
$$

$$
\begin{aligned}
A=6000\left(1+\frac{.07}{1}\right)^{(1)(10)} & =6000(1.07)^{10} \\
& =(11,802.91
\end{aligned}
$$

6. a. Solve $\log _{3}(4-10 x)=1$ algebraically.

$$
\begin{aligned}
3^{\prime} & =4-10 x \\
-1 & =-10 x \\
\frac{1}{10} & =x
\end{aligned}
$$

7. Solve $\log _{b} 1024=5$ algebraically.

$$
\begin{aligned}
& b^{5}=1024 \\
& b=4
\end{aligned}
$$

8. Chemists use a logarithmic scale called pH to measure acidity given by the function $p H=-\log _{10}\left[H^{+}\right]$where H^{+}is the hydrogen ion concentration of the solution. If spinach has a pH of 5.5 , find its hydrogen ion concentration.

$$
\begin{aligned}
& 5.5=-\log _{10}\left[\mathrm{H}^{+}\right] \\
& -5.5=\log _{10}\left[\mathrm{H}^{+}\right] \\
& 10^{-5.5}=\mathrm{H}^{+}=3.16 \times 10^{-6}
\end{aligned}
$$

9. Given $f(x)=\log _{10} x$.
a. $f(3)=\log _{10}(3)=0.477$
b. $f(10)=\log _{10}(10)=1$
10. a. Express as a sum and difference of logarithms. $\log _{3} \frac{y^{3} z^{2}}{k^{4}}$

$$
\begin{aligned}
& =\log _{3} y^{3}+\log _{3} z^{2}-\log _{3} k^{4} \\
& =3 \log _{3} y+2 \log _{3} z-4 \log _{3} k
\end{aligned}
$$

b. Express as a single logarithm. $\ln \sqrt{x}+\ln y^{2}-4 \ln (3 z)$

$$
\begin{aligned}
& =\ln \sqrt{x}+\ln y^{2}-\ln (3 z)^{4} \\
& =\ln \left[\frac{\sqrt{x} y^{2}}{(3 z)^{4}}\right]=\ln \left[\frac{x^{1 / 2} y^{2}}{81 z^{4}}\right]
\end{aligned}
$$

