Show all work for credit. If the problem specifies you to use a particular method, you must show the work accordingly. If the problem does not specify you to use a particular method, you may use any appropriate method to solve. However, you still must show your work for credit.

1. a. Complete the table for the graphs of $f(x) = 4^x$ and $f(x) = 4^x - 2$.

x	$f(x) = 4^x$	$f(x) = 4^x - 2$
-2	4-2 = 16 = .0625	-1.9375
-1	4-1 = 4 = .25	-1.75
0	40=1	-1
1	4' =4	2
2	42 = 16	14

b. How has the graph of $f(x) = 4^{x} - 2$ changed in comparison to the standard graph of

$$f(x) = 4^x? \qquad \text{Down 2}$$

c. Complete the table for the graph of $f(x) = \log_4 x$.

x	$f(x) = \log_4 x$
4-2 = 16	-2
4-1 = 4	-1
40 = 1	0
4' = 4	1
42 = 16	2

4 = x

d. Sketch the graphs of $f(x) = 4^x$, $f(x) = 4^x - 2$, and $f(x) = \log_4 x$ on the same axis.

e. In part d, which two functions are inverses and how do you know?

2. a. Solve
$$5^{x^2-x-4} = 25$$
 algebraically.

$$5^{x^2-x-4} = 5^2$$

$$x^2-x-4 = 2$$

$$x^2-x-6=0$$

$$(x+2)(x-3)=0$$

$$x=-2$$

b. Solve
$$5^{x^2-x-4} = 25$$
 graphically.

3. A color TV loses 30% of its value every 2 years. The value of a TV set t years after it was purchased for \$700 is given by the function $V(t) = 700(0.7)^{t/2}$. Calculate the value of the TV in 5 years.

by the function
$$V(t) = 700(0.7)$$
. Calculate the value of the 1

Years after purchase

$$V(5) = 700(.7)^{5/2} = 286.97$$

4. Simplify each of the following.

a.
$$\log_3 81 = 4$$

b.
$$\log_{10} \frac{1}{1000} = -3$$

c. $\log_{8} 2 = \frac{1}{1000}$
d. $\ln e^{4} = 4$
 $e^{3} = e^{4}$

c.
$$\log_8 2 = \frac{1}{3}$$

d.
$$\ln e^4 = 4$$

5. Suppose that \$6000 is invested at 7% interest compounded annually. Find the future value of

$$= P(1 + \frac{r}{n})^{nt} \qquad P = 6000$$

$$r = 0.07$$

$$h = 1$$

Suppose that \$6000 is invested at 7% interest compounded annually. Find the future he investment at the end of 10 years.
$$A = P(1 + \frac{r}{n})^m$$

$$A =$$

6. a. Solve $\log_3(4-10x) = 1$ algebraically.

$$3' = 4 - 10 \times 10^{-1}$$
 $-1 = -10 \times 10^{-1}$
 $\frac{1}{10} = x$

7. Solve $\log_b 1024 = 5$ algebraically.

$$b^{5} = 1024$$

$$\boxed{b=4}$$

8. Chemists use a logarithmic scale called pH to measure acidity given by the function $pH = -\log_{10}[H^+]$ where H^+ is the hydrogen ion concentration of the solution. If spinach has a pH of 5.5, find its hydrogen ion concentration.

$$5.5 = -109_{10} [H^{\dagger}]$$

$$-5.5 = 109_{10} [H^{\dagger}]$$

$$10^{-5.5} = H^{\dagger} = 3.16 \times 10^{-6}$$

9. Given $f(x) = \log_{10} x$.

a.
$$f(3) = 10g_{10}(3) = 0.477$$

b. $f(10) = 10g_{10}(10) = 1$

- 10. a. Express as a sum and difference of logarithms. $\log_3 \frac{y^z z^z}{k^4}$ = 1093 Y3 + 1093 22 - 1093 K4 = 31093 y + 21093 2 - 4 1093 K
 - Express as a single logarithm. $\ln \sqrt{x} + \ln y^2 \left(-4\right) \ln(3z)$ b. = ln /x + lny 2 - ln (32)4 $= \left[\ln \left[\frac{\sqrt{x} + y^2}{(3z)^4} \right] = \ln \left[\frac{x''^2 + y^2}{81z^4} \right] \right]$