MAC1105	Test 2
(Deborah H	loward 3-16)

8:145

1. Sketch a complete graph of f(x). Remember that your graph is the solution, so show appropriate detail including the coordinates of all corner points.

8. Many elevators have a capacity of 1000 pounds. Let us say that a child averages 40 pounds and an adult averages 130 pounds.

a.) Write an inequality that describes when \underline{x} children and \underline{y} adults will cause the elevator to be overloaded.

$$\begin{array}{c}
(40x + 130y > 1000) \\
(20, y \ge 0)
\end{array}$$

b.) Sketch a complete graph. Remember that your graph is the solution, so show appropriate detail including the coordinates of all corner points.

$$\frac{130 y}{130} > \frac{40 \times + 130 y}{130} > \frac{1000}{130}$$
dotted line: $y > \frac{-4}{13} \times + \frac{100}{13}$

(25,0) (0,7.69)

3. The profit for a product can be described by the function $P(x) = 202x - 5000 - x^2$ dollars, where x is the number of units produced and sold.

- a.) To maximize profit, how many units must be produced or sold?

or
$$X = -\frac{b}{2a} = \frac{-(20a)}{a(-1)}$$

$$X = -\frac{20a}{-a} = 101 \text{ units}$$

Q

\$5201)

c.) Find the x-intercepts.
$$0 = -1 \quad b = 202 \quad c = -5000$$

$$y_2 = 0 \quad \text{CALCH5} \quad \text{OR} \quad y = -202 \pm \sqrt{202^2 - 4(-1)(-5000)}$$

$$x = -202 \pm 144.2359179$$

d.) State the meaning of the x-intercepts in the context of the problem.

The profit will be zero (break even) if 28.88 or 173.12 units are produced and sold.

4. Given $f(x) = -x^2 - 60x + 2100$. Find the vertex algebraically.

$$a = -1$$
 $b = -60$ $c = 2100$

$$X = -\frac{b}{aa} = -\frac{(-60)}{a(-1)} = 30$$

$$y = -(-30)^2 - 60(-30) + 2100 = 3000$$

5. Given $f(x) = 6x^2 - 19x - 7$.

cannot do root method oice.

(b) a.) Find the x-intercepts by a method of your choice.

Q.F. a=6 b=-19 c=-7

 $\chi = -\frac{(-19)^{\pm}\sqrt{(-19)^2 - 4(6)(-7)}}{2(6)} = \frac{19^{\pm}\sqrt{361 + 168}}{12} = \frac{19^{\pm}\sqrt{529}}{12}$

 $X = \frac{19 \pm 23}{12}$ $\left(\frac{3.5}{9R}, -\frac{3}{12}\right)$

b.) Find the x-intercepts again by a different method than used above.

Factoring $0 = 6x^2 - 19x - 7$ 0 = (3x + 1)(2x - 7)

0 = (3x + 1)(2x - 1) 3x + 1 = 0 $x = -\frac{1}{3}$ $x = \frac{7}{3}$

of Graphing $11 = 6x^2 - 19x - 7$ $11 = 6x^2 - 19x - 7$ $11 = 6x^2 - 19x - 7$ $11 = 6x^2 - 19x - 7$ $11 = 6x^2 - 19x - 7$

x = -.3 3.5 x = -.3 3.5

3.3 6. Show a complete sketch of the graph of $f(x) = \begin{cases} |x+5|; & x < 1 \\ \sqrt{x} + 2; & x \ge 1 \end{cases}$

7. First class postage with a private postal service costs \$ 0.29 for all weights through 1 ounce, plus \$0.16 for each ounce or fraction of an ounce thereafter. Each letter is required to carry one \$ 0.29 stamp and as many \$0.16 stamps as necessary. Let the function f(x) represent the number of stamps on a letter weighing x ounces up to 3 ounces.

a.) Complete the equation that models this problem.

$$f(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 2 & \text{if } 1 \le x < 2 \\ 3 & \text{if } 2 \le x < 3 \end{cases}$$

$$\frac{.29}{+.16}$$
 $\frac{.32}{.61}$

b.) Show a complete sketch of the graph.

w	ight X_	f(k)	erof stamps
	0	0_	
	.5		294 stamp
-		2	294 and 164
	1.5	2	·
•	2	3	29¢ and 2 16
	25	3	