

1. $f(x)=6 x^{2}-3 x-4$
(3) a.) What is the degree of the polynomial? $n=2$
(3).) How many terms does $f(x)$ have? (3)
(3)
c.) What is the coefficient of the second term? -3
2. A rectangular pen has a length that is four less than twice its width. Write an expression describing the area of the rectangular pen.
Simplify so that it is not in factored form.
(9)

$$
\begin{aligned}
& A=l w \\
& A=w(2 w-4) \\
& A=2 w^{2}-4 w
\end{aligned}
$$

3. Factor completely $x y-7 x+8 y-56:$ grouping
(9)

$$
x(y-7)^{2}+8(y-7)
$$

4. Factor completely $2 m^{3}-6 m^{2}-20 m: G C F$

$$
\begin{aligned}
& 2 m\left(m^{2}-3 m-10\right) \\
& 2 m(m+2)(m-5)
\end{aligned}
$$

5. Factor completely $c^{3}+27 t^{3}$

$$
\frac{c^{3}+(3 t)^{3}}{(c+3 t)\left(c^{2}-3 c t+9 t^{2}\right)}
$$

6. The height (t), in feet, of an airborne T-shirt t seconds after being launched can be approximated by $h(t)=-15 t^{2}+105 t+10$.
Algebraically find the times when the T-shirt will reach 100 feet above the ground level.

$$
\begin{aligned}
& 100=-15 t^{2}+105 t+10 \\
& \frac{0}{-15}=\frac{-15 t^{2}}{-15}+\frac{105 t}{-15} \frac{-90}{-15} \\
& 0=t^{2}-7 t+6 \\
& 0=(t-1)(t-6) \\
& t-1=0 \quad t-6=0 \\
& t=1 \quad t=6
\end{aligned}
$$

7. Determine the domain of $f(x)=\frac{x^{2}-25}{x^{2}+7 x-18}=\frac{(x+5)(x-5)}{(x+9)(x-2)}$
(9)

$$
\begin{array}{ll}
x+9 \neq 0 & x-2 \neq 0 \\
x \neq-9 & x \neq 2
\end{array}
$$

8. Simplify. Write solutions in factored form when possible.
(a)

$$
\begin{aligned}
& \frac{x^{2}-4}{x^{2}+2 x-3} \cdot \frac{x^{2}+7 x+12}{x^{2}-4 x+4} \\
& \frac{(x+2)(x-2) \cdot(x+3)(x+4)}{(x+3)(x-1)(x-2)(x-2)}=\frac{(x+2)(x+4)}{(x-1)(x-2)}
\end{aligned}
$$

9. Simplify. Write solutions in factored form when possible.
(a)

$$
\begin{aligned}
& \frac{2}{x^{2}-9}-\frac{3}{x^{2}+4 x+3} \\
& (x+3)(x-3) \quad(x+3)(x+1) \\
& \frac{2(x+1)}{(x+3)(x-3)(x+1)}-\frac{3(x+3)(x-3)(x+1)}{(x+3)(x+1)(x-3)} \\
& \frac{2 x+2-3 x+9}{(x+3)(x+1)(x-3)}
\end{aligned}
$$

10. Solve the proportion by a method of your choice. Show work for credit. Four is to $(x-3)$ as x is to one.
(9)

$$
\begin{aligned}
\frac{4}{x-3} & =\frac{x}{1} \\
4(1) & =x(x-3) \\
4 & =x^{2}-3 x \\
0 & =x^{2}-3 x-4 \\
0 & =(x+1)(x-4) \\
x+1 & =0 \quad x-4=0 \\
x & =-1 \quad x=4 \quad x \neq 3
\end{aligned}
$$

11. Simplify. Write solutions in factored form when possible.

$$
\frac{\frac{x^{2}-x-2}{x}}{\frac{x-2}{x^{2}}}=\frac{(x+1)(x+2)}{x} \cdot \frac{x^{2}}{(x-2)}=x(x+1)
$$

