
A Quick Overview of COP 2341 – Linux Shell Scripting
Fall, 2013, Jerry Reed

What is this document?

This is not the syllabus – that's coming. That's long, and full of details about grading, rules and so
forth. This is just an informal FAQ to help you get an overview of what the class will be like.

Please feel free to e-mail me with any questions or comments.

What text are we using?

There is NO REQUIRED textbook for this class. All of the information you will need to succeed is
available on-line, mostly from sites on the Internet you find via Google and from on-line discussions
with your classmates, and from asking me questions.

That said, I STRONGLY RECOMMEND that you purchase this:

http://shop.linuxnewmedia.com/us/magazines/special-editions/eh32022.html

It's a special edition of Linux Pro Magazine that does a really excellent job of covering almost all of
what you need to know for this class. The articles are short, by textbook standards, and that means they
can be challenging to read, but they get right to the important material immediately. At $15, it's a
bargain.

http://shop.linuxnewmedia.com/us/magazines/special-editions/eh32022.html

This edition might still be available over the counter at larger bookstores, but you can always order it
on-line. It comes bundled with a DVD of one Linux distribution, but you probably want to check out
the section below on “What are my Linux options?” below before installing.

A free sample article is here:

http://www.linuxpromagazine.com/content/download/70475/581816/version/1/file/090-
095_scripting_SE10.pdf

and another here:

http://www.linuxpromagazine.com/content/download/70476/581819/version/1/file/009-
011_filemanagement.pdf

What is Shell scripting?

Shell scripting is like learning a specialized programming language. The “shell” is just a buzzword for
a command-line programming language also known as Bash. This language is built-in to almost every
Linux system, and also runs on OSX and can even be added to Windows (with Cygwin).

You know about if and while and variables from your other programming classes, but shell scripting
adds powerful Linux commands and utilities to these basic programming constructs. The result is that
you can write really short programs (“scripts”) that accomplish a lot more than a much longer program
in C or Java.

In some cases, you can connect the output of one command to the input of the next, forming a pipeline
that does four or five things in the same line. You can save the command combinations you use in files
and run them whenever you need, or even schedule them to run unattended.

The available commands run from simple, like cat, which copies information from a source to a
destination, to full-fledged programming languages, like awk, which is a C-like language for
processing and parsing data from files. Scripts assemble combinations of these commands together and
allow iterating (repeating) commands, or executing them conditionally (if). The result can be a very
powerful “program” of twenty or so lines that automates a complex task and that would take literally
hundreds of lines of C or Java.

What will we do in this class?

The best way to learn about the shell commands and using them in shell scripts is to experiment with
developing some useful and entertaining scripts yourself. Towards that end, a lot of your time will be
spent working on projects I assign (or that you come up with).

http://www.linuxpromagazine.com/content/download/70476/581819/version/1/file/009-011_filemanagement.pdf
http://www.linuxpromagazine.com/content/download/70476/581819/version/1/file/009-011_filemanagement.pdf
http://www.linuxpromagazine.com/content/download/70475/581816/version/1/file/090-095_scripting_SE10.pdf
http://www.linuxpromagazine.com/content/download/70475/581816/version/1/file/090-095_scripting_SE10.pdf

Here's a hypothetical example of a moderately simple project:

Here's the output from some Bash command:

total 228
-rwxr-xr-x 1 jerry jerry 130 2007-06-01 21:57 buildLuaExt.sh
-rw-r--r-- 1 jerry jerry 207 2007-06-06 09:13 collapse.awk
-rw-r--r-- 1 jerry jerry 1515 2007-06-06 15:12 luabridge.h
-rw-r--r-- 1 jerry jerry 15350 2007-06-06 15:14 luabridge.c
-rw-r--r-- 1 jerry jerry 2296 2007-06-07 19:35 avg.lua
drwxrwxr-x 2 jerry jerry 4096 2012-08-27 13:52 cop2800
-rw-rw-r-- 1 jerry jerry 10638 2013-02-19 09:01 Untitled 1.odt
-rw-rw-r-- 1 jerry jerry 13084 2013-02-19 09:28 project_directions2.odt
-rw-rw-r-- 1 jerry jerry 80 2013-03-13 08:53 p3_input_file.txt~
-rw-rw-r-- 1 jerry jerry 74 2013-03-13 09:04 p3_input_file.txt
-rw-rw-r-- 1 jerry jerry 720 2013-03-13 09:05 sample_scanf.c~
-rw-rw-r-- 1 jerry jerry 1253 2013-03-13 09:08 sample_scanf.c
-rwxrwxr-x 1 jerry jerry 7449 2013-03-13 09:08 a.out
-rw-rw-r-- 1 jerry jerry 124366 2013-04-10 12:00 kern-1.log
drwxrwxr-x 2 jerry jerry 4096 2013-04-24 13:17 cts2321
drwxrwxr-x 2 jerry jerry 4096 2013-04-25 16:25 cop2220
drwxrwxr-x 2 jerry jerry 4096 2013-04-26 16:11 cop2224
drwxrwxr-x 2 jerry jerry 4096 2013-05-28 10:33 cop2341

Please answer the following questions and provide links to resources you used in answering
these questions?

• What command produced this output?
• Who owns all the files here? (easy).
• Note the order of the files (newest file last, oldest file last). What command flags were

used to do this? Which of these entries are directories (like folders on Windows)? How
can you tell?

• Which file is the largest? The smallest?

Here's a broad hint: “the command you need starts with an l (lowercase lletter el)”.

Submit your answers as an assignment, and then post the links you used in the discussion
forum set up for that purpose. (That way you are helping others who might be “stuck”).

Here's a hypothetical example of an advanced project:

Ping any network host you like, no more than once a minute. Log the responses, and
produce a script that can be run daily to graph the resulting network delays. You might
like to use gnuplot to produce the graph.

After you submit this assignment, please post your graphical output, along with any links
you used to figure all this out, in the designated Discussion Forum in Blackboard.

Here's the typical workflow for a project like this:

1. Find out what ping does (Google it, example: http://www.wikihow.com/Ping-in-Linux
)
2. Find out about gnuplot (Google it, example: http://gnuplot.sourceforge.net/)
3. Try ping out on the command line to see the results.
4. Try some gnuplot examples.

http://www.wikihow.com/Ping-in-Linux
http://gnuplot.sourceforge.net/

5. Plan your script. (Where will I put the output from ping? How will I run gnuplot
daily?)
6. Experiment and develop your script by running the needed commands directly.
7. Look at automating this with cron (Google again,
example:http://www.thegeekstuff.com/2009/06/15-practical-crontab-examples/).
8. Submit your script on the relevant assignment in Blackboard
9. Post the links and output in the designated Blackboard discussion forum.

Both #1 (ping) and #7 (cron) are covered in the recommended Linux Pro Magazine issue, too.

So we'll have projects due roughly weekly, plus discussion postings and two exams.

I'll post some of my own material and examples, along with “starter” links and a few videos, but most
of what you need to know you'll find from the web, or the magazine. There are tons of videos about
Linux shell on YouTube, and so my videos won't duplicate those so much as provide brief examples of
my particular point of view (and biases :-) about Linux.

Where can I go for help if I get stuck or just have questions?

You can ask a question in the Questions and Answers discussion forum (best), or e-mail me, or come to
the West Campus IT lab.

Asking in the Questions and Answers Blackboard forum is the best option because:

1. I subscribe to that forum, and you should too. That way as soon as something is posted, we'll get an
e-mail with the post inside. Those go to my phone. I can usually respond to these within a couple of
hours, between about 8:00 AM and 10:00 PM. Please do not use the Messages facility in Blackboard
(I try to hide it) because it does notify me and I will forget to check it in a timely fashion.

2. Since there are almost certain to be a few folks in our class who already know a fair amount about
Linux, or who have already dealt with similar issues in their own work, I'm not the only one who may
answer and provide help. Interaction with other folks on-line is a crucial part of this class.

3. You may find that your question has already been asked and answered already. If you see a question
where you can contribute, please jump in and don't wait for me, or feel free to correct or extend
answers from others and from me.

http://www.thegeekstuff.com/2009/06/15-practical-crontab-examples/

E-mailing me is fine, too, (greed9@valenciacollege.edu) but is best reserved for questions that you
don't feel comfortable sharing more publicly, such as questions about your grades or progress in the
class. I check pretty regularly, but not so much on weekends and nights, so the post with a push to my
phone works much faster, in general.

Coming to the lab is logistically difficult, I know but for some problems, there is no substitute for
hands-on assistance. The lab staff can help with the majority of shell scripting problems, and they can
consult me if needed as well. This is particularly useful if you are having trouble getting your Linux
system set up initially.

http://valenciacollege.edu/west/engineering/LabHours.cfm

What can I learn in this class?

Please see the attached Learning Outcomes document. It has a number of links to related pages,
although some may be broken at the moment.

What are my options for a Linux environment?

The good news is that there are more and more options for installing Linux every day, it seems. The
bad news is that you need to decide how you want to proceed.

1. If you have the memory and CPU, and the patience for a bit more complex installation, then the
absolutely most versatile way to go is to create a Linux Virtual Machine (VM) using software such as
Virtual Box from Oracle:

http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html#vbox

and

Programming Lab
Bldg. 7, Room 122.

http://valenciacollege.edu/west/engineering/LabHours.cfm
mailto:greed9@valenciacollege.edu
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html#vbox

http://www.virtualbox.org/manual/ch02.html

or the non-open-source (but still free and robust) Vmware:

http://www.vmware.com/products/player/overview.html

Advantages:

“Bullet-proof”. If you take snapshots at regular intervals, then no matter how badly you mess up your
virtual machine, you can always revert to a prior state and start over. Now it is unlikely that you'll
mess up your Linux install in this class, but for the Linux System Administration class (CTS 2321),
where there is a lot of configuring and experimenting expected, we always push this option.

“Portable”. You can get Virtual Box for OSX, Linux and Windows, meaning that any of these three
OS'es can host your virtual Linux installation. You can even export your VM and move to another type
of host if needed. If you're running Windows 8, this may be your best option.

Disadvantages:

“Resource intensive”. You really do need at least 4 GB of RAM, and perhaps 50 GB of free hard disk
space. Dual-core or greater class processors are strongly recommended. You can squeeze a small VM
(say something like TinyCore, Slitaz or DSL) into 1 GB RAM and 2 GB of disk on a single-core
processor, but you won't be happy with the performance and the compromises in features and ease of
use you will need to make.

With a 4 GB machine, and dual-core processor, you can basically bisect the machine, with Windows
getting 2 GB and one core, and the VM getting the other GB and the other core. The disk space is
used to store the Linux file system, as well as to provide space to save the machine when it is shutdown
or when you take a snapshot or create and export an appliance.

2. Bare-metal install. This means that you install Linux directly on a hard drive in your system, and
then reboot from Windows into it. (Not easily applicable to OSX or to Windows 9 yet).

Advantages:

“Good performance”. Even on low-end hardware, say an aging laptop, a direct, bare-metal install of
Linux will yield quite acceptable performance, like better than Windows on the same machine, if the
resources are limited. Should work to dual-boot with Windows 8, or Windows 7.

Disadvantages:

“Install can be scary”. If you still intend to keep the current Windows installation on the computer, you
will be asked to partition the disk during the install to allow Linux to co-exist and boot. This is quite
safe, if you follow the instructions. If you rush through recklessly, you could clobber your Windows
install :-(.

3. Wubi installation. Simulates a dual-boot, bare-metal install but doesn't partition your hard drive,
just puts all of Linux in one gigantic file on Windows.

http://www.vmware.com/products/player/overview.html
http://www.virtualbox.org/manual/ch02.html

http://www.ubuntu.com/download/desktop/windows-installer

Advantages:

“Easy installation”. Provided you're on Windows 7 (or XP), very easy installation, and subsequent
uninstall if desired. No scary disk partitioning dialogs, since everything “lives” on the Windows side.

Disadvantages:

“Ok but not great performance”. Performance is slowed a bit by having to go through the Windows file
system, relative to bare-metal, but still pretty good.

Doesn't work with Windows 8.

4. Get a Raspberry Pi: If you are the kind of person who is comfortable plugging together a bit of
hardware, and maybe even has say an old USB keyboard and mouse laying around, you might want to
invest the $45 or so and pick yourself up your own tiny, dedicated Linux computer.

Wildly popular on the Internet, the Raspberry Pi is a 700 Mhz ARM processor (like your phone, likely)
with 512 MB of RAM and an SD card for “disk”. It plugs into any HDMI-capable monitor or TV and
runs recent versions of Linux, including of course, the Bash shell we need for this class.

http://www.raspberrypi.org/quick-start-guide

and

http://www.engadget.com/2012/09/04/raspberry-pi-getting-started-guide-how-to/

http://www.ubuntu.com/download/desktop/windows-installer
http://www.raspberrypi.org/quick-start-guide
http://www.engadget.com/2012/09/04/raspberry-pi-getting-started-guide-how-to/

and

http://www.designspark.com/knowledge-item/raspberry-pi---getting-started-guide

and

a million others.

Advantages:

“Fun factor”: The Pi is everything some of us weren't in High School – cute and popular. :-) Your small
investment buys a complete Linux computer that you can dedicate to this class, and subsequently to
any one of a large number of projects like these you might decide to undetake:

http://www.linuxuser.co.uk/features/amazing-raspberry-pi-projects-part-1

and

http://www.reddit.com/r/AskReddit/comments/1f607z/owners_of_a_raspberry_pi_what_do_you_use_it
_for/

Disadvantages:

“Total cost of ownership”. This is still a low total , but to make the Pi work, you need

• the board itself ($45 or so, plus shipping),
• a USB keyboard,
• a USB mouse, a monitor or TV that accepts HDMI input,
• a SD card with a Linux distribution such as Raspbian on it,
• Ethernet cable,
• and a USB powered hub.

Total is closer to $100 I expect, if you have to buy all these except the TV.

The SD card holds the Linux OS, and any files you create or install. You can buy one with Linux
already installed:

http://www.adafruit.com/products/1121?gclid=CIGBuJ_K67cCFXRp7AodcjUABA

or you can make your own like this from Windows if your PC/laptop has a slot for an SD card or you
use an adapter:

http://elinux.org/RPi_Easy_SD_Card_Setup

The keyboard, mouse and TV/monitor are necessary to interact with the Pi during initial setup. After
you have configured things initially and plugged the Pi into your router with an Ethernet cable, you can
dispense with the borrowed TV, keyboard and Mouse, and interact with the Pi remotely, like this:

http://elinux.org/RPi_Easy_SD_Card_Setup
http://www.adafruit.com/products/1121?gclid=CIGBuJ_K67cCFXRp7AodcjUABA
http://www.reddit.com/r/AskReddit/comments/1f607z/owners_of_a_raspberry_pi_what_do_you_use_it_for/
http://www.reddit.com/r/AskReddit/comments/1f607z/owners_of_a_raspberry_pi_what_do_you_use_it_for/
http://www.linuxuser.co.uk/features/amazing-raspberry-pi-projects-part-1
http://www.designspark.com/knowledge-item/raspberry-pi---getting-started-guide

http://elinux.org/RPi_Remote_Access

The USB powered hub is needed to supply 5 volt current to the Pi, and to support plugging lots of other
USB peripherals into the Pi if you need.

“Techy”: You should be comfortable plugging in cables, and the like to attempt this approach.

I have set up several Raspberry Pi's and I would be glad to provide advice as needed. Obviously if
you're a PC-head who has lots of keyboards and cables laying around, you cost can be pretty much
limited to the Pi itself.

Plus, we have several Raspberry Pi's in the Computer Programming and Applications Lab on West, so
feel free to stop by and check out a demo if you like. Details on the lab hours and location are under
the “Where can I go for help...” question above.

5. Something else: the Terminal app on OSX, Cygwin on Windows, remote access to
cop2341.valenciacollege.edu via putty.

If you've got a Mac, in theory you can use the Terminal application there to develop Bash scripts.

http://guides.macrumors.com/Terminal

This will work and I have had at least one student complete this course successfully using this
approach. You should be aware that OSX is not Linux, and although the two are quite similar
internally, there are lots of little differences between the two when it comes to exact commands.

http://stackoverflow.com/questions/8051145/is-the-terminal-in-mac-and-linux-the-same

You may have to wrestle with the tendency of Mac users to embed spaces in file and directories,
forcing a lot of quotes around things.

If you can work around this, and you have a modern (10.3.x) version of OSX, then you're set already.

http://guides.macrumors.com/Terminal
http://stackoverflow.com/questions/8051145/is-the-terminal-in-mac-and-linux-the-same
http://elinux.org/RPi_Remote_Access

If you really want to stick with Windows, and are willing to put up with some annoying, if small
differences, then consider installing Cygwin.

http://www.cygwin.com/install.html

Cygwin is a POSIX compatibility layer for Windows (Google it). It provides a bash shell under
Windows XP, 7 or 8. Almost all Linux commands and utilities are available and work identically to
“real” Linux. I use it all the time in my work.

As with the OSX terminal, there are small and somewhat distracting differences in the way files are
named and located, with the Windows backslash (\) giving way to the Linux forward slash (/) C:\blah
blah becoming “/cygdrive/c/blah blah” and so on.

I've had two students try this in the past, and each switched to Linux half-way through the class, but I
understand this class has been taught entirely using Cygwin before, so it is doable.
Last but not least, the college maintains a Linux machine that you can access remotely to do the work
of this class. It's cop2341.valenciacollege.edu and is accessible via the Internet.

file:///C:/blah
http://www.cygwin.com/install.html

Using a program such as putty:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

and login credentials we supply, you could log into this college computer remotely from your Windows
PC and create, edit and run Bash shell scripts. This is not the most user-friendly setup, but is workable
and many students have used it successfully in the past. (For OSX you probably already have all the
software you need to connect).

Please get in touch with me if you need details of this approach.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

