

Common Beginner C++
Programming Mistakes

This documents some common C++ mistakes that beginning programmers make.

These errors are two types:

Syntax errors – these are detected at compile time and you won't be able to run

your program until these are fixed. Listed are the errors that you will see if you
are using the Visual Studio C++ compiler.

Syntax errors will be displayed on the “Output” window. Here is a screen-shot

with an error shown circled in red:

Logic errors – these are not compile errors, so your program will compile and

run. However, it most likely won't give you the correct results. These can be
difficult to track down.

Each common mistake shows an example of the error and the correction (in red)

that will fix the mistake.

These examples came from several resources, including

http://www.cprogramming.com/tutorial/common.html

Common Beginner C++ Programming Mistakes – Syntax Errors

1

Common Syntax Errors (detected at compile time)

1. Undeclared Variables

"Huh? Why do I get this error?"

'x' : undeclared identifier

The compiler doesn't know what x means. You need to declare it as a variable.
(The 'x' will be replaced with your specific variable name.)

Another common issue for undeclared variables/functions is misspelling a

variable/function name or using the case of the letters inconsistently. Remember,
C++ is case sensitive, so

int Main() is not the same as
int main()

In Visual Studio, if you enter Main() instead of main(), you get the following linker

error:

error LNK2019: unresolved external symbol _main referenced in function
___tmainCRTStartup

int main()

{

 int x;

 cin >> x;

 cout << x;

}

int main()

{

 cin >> x;

 cout << x;

}

Common Beginner C++ Programming Mistakes – Syntax Errors

2

2. Undeclared Functions

"Why do I get an error about menu being unknown?"

error C3861: 'menu': identifier not found

The compiler doesn't know what menu() stands for until you've told it, and if you

wait until after using it to tell it that there's a function named menu, it will get

confused. Always remember to put either a prototype for the function or the
entire definition of the function above the first time you use the function.

int main()

{

 menu();

}

void menu()

{

 //...

}

void menu();

int main()

{

 menu();

}

void menu()

{

 ...

}

Common Beginner C++ Programming Mistakes – Syntax Errors

3

3. Missing semicolons

"Huh? Why do I get an error?"

error C2146: syntax error : missing ';' before identifier 'cout'

The compiler sees the cin and cout lines as one line of code, since there is only
one semicolon. In larger programs, a single missing semicolon can generate

multiple cascading errors. Fix the first occurrence of it and recompile before
wasting time trying to track down extraneous errors. Note that in your specific

program, "cout" in the above example will be replaced with the first word from the
statement following the one in your program with the missing ;

int main()

{

 int x;

 cin >> x;

 cout << x;

}

int main()

{

 int x;

 cin >> x

 cout << x;

}

Common Beginner C++ Programming Mistakes – Syntax Errors

4

4. Extra semicolons

"Huh? Why do I get an error?"

error C2447: '{' : missing function header (old-style formal list?)

Semicolons go at the end of complete statements. The following are not complete
statements, so they don't get a semicolon:

Function declarations

#include lines

if lines

switch lines

Some of these will cause syntax errors, some will cause logic errors.

void menu();

int main()

{

 //...

 menu();

}

void menu() removed ;
{

 //...

}

void menu();

int main()

{

 //...

 menu();

}

void menu();

{

 //...

}

Common Beginner C++ Programming Mistakes – Syntax Errors

5

5. Incorrect number of braces

"Huh? Why do I get an error?"

fatal error C1075: end of file found before the left brace '{' …

Braces are the "begin" and "end" around blocks of code. You must have a } for

every {. Missing (or extra) braces can lead to a cascading number of errors.

Hint: Fix the braces issue and recompile before chasing down extraneous errors.

int main()

{

 int x;

 cin >> x;

 if (x == 5)

 {

 cout << x;

 }

}

int main()

{

 int x;

 cin >> x;

 if (x == 5)

 {

 cout << x;

}

Common Beginner C++ Programming Mistakes – Logic Errors

6

Logic Errors (detected at run time)

1. Uninitialized variables

"Why doesn't my program enter the while loop?"

In C++ variables are not initialized to zero. In the above snippet of code, count

could be any value in the range of int. It might, for example, be 586, and in that
situation the while loop's condition would never be true. Perhaps the output of the

program would be to print the numbers from -1000 to 99. In that case, once
again, the variable was assigned a memory location with garbage data that

happened to evaluate to -1000.

Visual Studio will give you the following warning, but will still let the compile

succeed and will let you run the program. You should strive to fix all warnings in
addition to all errors.

warning C4700: uninitialized local variable 'count' used

Remember to initialize your variables.

int count = 0;

while (count < 100)

{

 cout << count;

 count++;

}

int count;

while (count < 100)

{

 cout << count;

 count++;

}

Common Beginner C++ Programming Mistakes – Logic Errors

7

2. Setting a variable to an uninitialized value

"What's wrong with my program?"

Often beginning programmers believe that variables work like equations - if you
assign a variable to equal the result of an operation on several other variables that

whenever those variables change (a and b in this example), the value of the
variable will change. In C++ assignment does not work this way: it's a one shot

deal. Once you assign a value to a variable, it's that value until you reassign the
values. In the example program, because a and b are not initialized, sum will

equal an unknown random number, no matter what the user inputs.

Visual Studio will give you a warning about referencing uninitialized variables.
Heed the warning!

To fix this error, move the addition step after the input line.

int a, b;

int sum;

cout << "Enter two numbers to add: ";

cin >> a;

cin >> b;

sum = a + b;

cout << "The sum is: "<< sum;

int a, b;

int sum = a + b;

cout << "Enter two numbers to add: ";

cin >> a;

cin >> b;

cout << "The sum is: " << sum;

When Run:

Enter two numbers to add: 1 3

The sum is: -1393

Common Beginner C++ Programming Mistakes – Logic Errors

8

3. Using a single equal sign to check equality

"Why doesn't my loop ever end?"

If you use a single equal sign to check equality, your program will instead assign

the value on the right side of the expression to the variable on the left hand side,
and the result of this statement is TRUE. Therefore, the loop will never end. Use

== to check for equality.

char done = 'Y';

while (done == 'Y')

{

 //...

 cout << "Continue? (Y/N)";

 cin >> done;

}

char done = 'Y';

while (done = 'Y')

{

 //...

 cout << "Continue? (Y/N)";

 cin >> done;

}

Common Beginner C++ Programming Mistakes – Logic Errors

9

4. Extra Semicolons

"Why does it just output 100?"

You put in an extra semicolon. Remember, semicolons don't go after if statements,

loops, or function definitions. If you put one in any of those places, your program
will function improperly.

This is also a common mistake with a while statement, an if statement, and a

switch statement.

int x;

for (x = 0; x < 100; x++) removed ;
 cout << x;

int x;

for (x = 0; x < 100; x++);

 cout << x;

Common Beginner C++ Programming Mistakes – Logic Errors

10

5. Forgetting a break in a switch statement

"Why does it print two and three?"

Remember that C++ does not break out of a switch statement when a case is
encountered. It only breaks out when it hits the break; statement.

int x = 2;

switch(x)

{

 case 2:

 cout << "two" << endl;

 case 3:

 cout << "three" << endl;

}

int x = 2;

switch(x)

{

 case 2:

 cout << "two" << endl;

 break;

 case 3:

 cout << "three" << endl;

 break; // in case more cases are added later

}

Common Beginner C++ Programming Mistakes – Logic Errors

11

6. Overstepping array boundaries

"Why doesn't it output the correct values?"

Arrays begin indexing at 0; they end indexing at length-1. For example, if you
have a ten element array, the first element is at position zero and the last element

is at position 9.

int array[10];

//...

for (int x = 0; x < 10; x++)

 cout << array[x];

int array[10];

//...

for (int x = 1; x <= 10; x++)

 cout << array[x];

Common Beginner C++ Programming Mistakes – Logic Errors

12

7. Misusing the && and || operators

"Huh? Even though value is 10 the program loops. Why?"

Consider the only time the while loop condition could be false: both value==10
and value==20 would have to be true so that the negation of each would be false

in order to make the || operation return false. In fact, the statement given above
is a tautology; it is always true that value is not equal to 10 or not equal to 20 as

it can't be both values at once. Yet, if the intention is for the program only to loop

if value has neither the value of ten nor the value of 20, is necessary to use && :
!(value==10) && !(value==20), which reads much more nicely: "if value is not

equal to 10 and value is not equal to 20", which means if value is some number
other than ten or twenty (and therein is the mistake the programmer makes - he

reads that it is when it is "this" or "that", when he forgets that the "other than"
applies to the entire statement "ten or twenty" and not to the two terms - "ten",

"twenty" - individually). A quick bit of boolean algebra will help you immensely:
!(A || B) is the equivalent of !A && !B (Try it and see). The sentence "value is

other than [ten or twenty]" (brackets added to show grouping) is translatable to
!(value==10 || value==20), and when you distribute the !, it becomes

!(value==10) && !(value==20).

The proper way to rewrite the program:

int value;

do

{

 //...

 value = 10;

} while (!(value == 10) && !(value == 20))

int value;

do

{

 //...

 value = 10;

} while(!(value == 10) || !(value == 20))

