# **Chapter 5**

Section 1

Polynomials



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

#### **Definition**

A polynomial function in one variable is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_0 x^2 + a_1 x^4 + a_0 x^0$$
 (1)

where  $a_n, a_{n-1}, \ldots, a_1, a_0$  are constants, called the **coefficients** of the polynomial,  $n \ge 0$  is an integer, and x is the variable. If  $a_n \ne 0$ , it is called the **leading coefficient**, and n is the **degree** of the polynomial.

The domain of a polynomial function is the set of all real numbers.

- > a's are coefficients; must be real numbers
  > n is the degree; must be a whole number: {0,1,2,3,...}
- > an is the leading coeff.; an x" is leading term > ao is the constant (y-int.)

## Example 1

#### Identifying Polynomial Functions

Determine which of the following are polynomial functions. For those that are, state the degree; for those that are not, tell why not. Write each polynomial in standard form, and then identify the leading term and the constant term.

(a) 
$$p(x) = 5x^3 - \frac{1}{4}x^2 - 9$$
 (b)  $f(x) = x + 2 - 3x^4$  (c)  $g(x) = \sqrt{x} = X^{\frac{1}{2}}$ 

(d) 
$$h(x) = \frac{x^2 - 2}{x^3 - 1}$$

$$(e) G(x) = 8$$

(d) 
$$h(x) = \frac{x^2 - 2}{x^3 - 1}$$
 (e)  $G(x) = 8$  (f)  $H(x) = -2x^3(x - 1)^2$ 

(a) 
$$p(x) = 5x^3 - \frac{1}{4}x^2 - 9$$
 (b)  $f(x) = -3x^4 + x + 2$  (c) Not a polynomial, yes, 4th degree exponentis not while leading:  $5x^3$  const:  $-9$  (c) Not a polynomial exponential while leading:  $-3x^4$ 

A) 
$$h(x) = \frac{\chi^3 - 2}{\chi^3 - 1}$$

Not a polynomial, exponent is negative

e) 
$$G(x) = 8x^{\circ}$$

Jes, zero degree

lead: &

const: 8

$$f) H(x) = -2x^3(x-1)^2$$

$$H(x) = -2x^{3}(x-1)(x-1)$$

$$= -2x^{3}(x^{2}-2x+1)$$

$$= -2x^{5} + 4x^{4} - 2x^{3}$$

yes, 5th dagree leading term: -2x5

const: 0

## **Table**

| Degree    | Form                                        | Name               | Graph                                                                     |
|-----------|---------------------------------------------|--------------------|---------------------------------------------------------------------------|
| No degree | f(x) = 0                                    | Zero function      | The x-axis                                                                |
| 0         | $f(x) = a_0,  a_0 \neq 0$                   | Constant function  | Horizontal line with $y$ -intercept $a_0$                                 |
| 1         | $f(x) = a_1x + a_0,  a_1 \neq 0$            | Linear function    | Nonvertical, nonhorizontal line with slope $a_1$ and $y$ -intercept $a_0$ |
| 2         | $f(x) = a_2 x^2 + a_1 x + a_0,  a_2 \neq 0$ | Quadratic function | Parabola: graph opens up if $a_2 > 0$ ; graph opens down if $a_2 < 0$     |

ALWAYS LEARNING



(a) Graph of a polynomial function: smooth, continuous



**(b)** Cannot be the graph of a polynomial function

#### **Definition**

A power function of degree n is a monomial function of the form

$$f(x) = ax^n (2)$$

where a is a real number,  $a \neq 0$ , and n > 0 is an integer.

 $A = \bar{\sigma} X_{N}$ 





ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

## Figure: Graph of $f(x) = 1 - x^5$



Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

## **Example 2**

#### **Graphing a Polynomial Function Using Transformations**

Graph: 
$$f(x) = \frac{1}{2}(x-1)^4$$

(solution on next page)

#### **Solution**

Figure 8 shows the required stages.



Figure 8

### **Graph of a Polynomial Function**



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

# **Definition** -> x-intercepts/solutions/

If f is a function and r is a real number for which f(r) = 0, then r is called a real zero of f.

The following statements are equivalent:

- **1.** r is a real zero of a polynomial function f.
- 2. r is an  $\underline{x}$ -intercept of the graph of f.
- 3. x r is a factor of f.
- **4.** r is a solution to the equation f(x) = 0.

>#3. If r is a real zero of polynomial;

than X-r is a

factor of the polynomial.

## Example 3: Finding Zeros

Find the real zeros of the polynomial function

$$f(x) = x^3 + x^2 - 2x$$

$$x^{3} + x^{2} - 2x = 0$$

$$x(x^{2} + x - 2) = 0$$

$$x(x^{2} + x - 2) = 0$$

$$x(x - 1)(x + 2) = 0$$

$$x = \{0, 1, -2\}$$

$$\begin{array}{c}
\chi = 0 \\
\chi - 1 = 0
\end{array}$$

$$\chi = \{0, 1, -2\}$$

#### **Definition**

If  $(x-r)^m$  is a factor of a polynomial f and  $(x-r)^{m+1}$  is not a factor of f, then r is called a **zero of multiplicity** m **of** f.\*  $\longrightarrow$  repeated factors

#### If r Is a Zero of Even Multiplicity

Numerically: The sign of f(x) does not change from one side to the other side of r. Graphically: The graph of f touches the x-axis at r.

#### If r Is a Zero of Odd Multiplicity

Numerically: The sign of f(x) changes from one side to the other side of r. Graphically: The graph of f crosses the x-axis at r.

#### **Theorem**

Turning Points (max. and min. points)

If f is a polynomial function of degree n, then the graph of f has at most n-1 turning points.

If the graph of a polynomial function f has n-1 turning points, then the degree of f is at least n.

A graph with n-1 turns must be at least an nth degree polynomial.

### Example 4

#### Identifying the Graph of a Polynomial Function

Which of the graphs in Figure 13 could be the graph of a polynomial function? For those that could, list the real zeros and state the <u>least</u> degree the polynomial can have. For those that could not, say why not.



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

#### **Theorem**

#### **End Behavior**

For large values of x, either positive or negative, the graph of the polynomial function

$$f(x) = \underline{a_n} x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \quad a_n \neq 0$$

resembles the graph of the power function

$$y = a_n x^n$$



Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

Chapter 5.1-21

ALWAYS LEARNING

## Example 5

# Identifying the Graph of a Polynomial Function $\frac{\zeta_n}{\zeta_n}$

Which of the graphs in Figure 16 could be the graph of

$$f(x) = x^4 + ax^3 + bx^2 - 5x - 6$$



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

# Example 6

#### Writing a Polynomial Function from Its Graph

Write a polynomial function whose graph is shown in Figure 17 (use the smallest degree possible).  $\eta = 4$ 



X-int's: -2,0,2 -2,0,2 work odd mult. mult

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

# Example 7: Use Given Zeros to Write and Analyze Polynomial Functions

Form a polynomial of degree 3 with zeros – 3, 3, and 7. Write your answer in factored form and standard form with a leading coefficient of 1.

$$f(x) = (x+3)(x-3)(x-7)$$

ALWAYS LEARNING

#### Example 8

#### How to Analyze the Graph of a **Polynomial Function**

Analyze the factored form of the polynomial function  $f(x) = (2x-1)(2x+1)(x+3)^2 = (2x-1)(2x+1)(x+3)(x+3)$ 

- Step 1: Determine the end behavior.
- Step 2: Find the x and y intercepts.
- Step 3: Determine the zeros and their multiplicity. Use this to determine if the graph touches the x-axis or if it crosses.
- Step 4: Determine the maximum number of turning points.

ALWAYS LEARNING

#### $f(x) = (2x-1)(2x+1)(x+3)^2$

online: "resembles the power function y=4x4

which means both ends go up

Step 2: Find the x and y intercepts.

Step 1: Determine the end behavior.

$$\chi$$
-ints:  $2x-1=0$ ,  $2x+1=0$ ,  $x+3=0$   
 $x=\frac{1}{2}$ ,  $-\frac{1}{2}$ ,

$$f(x) = (2x-1)(2x+1)(x+3)^2$$

Step 3: Determine the zeros and their multiplicity. Use this to determine if the graph touches the x-axis or if it crosses.

$$X = -\frac{1}{2} \quad \text{mult. of } 1$$

$$X = \frac{1}{2} \quad \text{mult. of } 1$$

$$X = \frac{1}{2} \quad \text{mult. of } 1$$

$$X = -3 \quad \text{mult. of } 2 \rightarrow \text{touch the } X - axis$$

$$X = -3 \quad \text{mult. of } 2 \rightarrow \text{touch the } X - axis$$

Step 4: Determine the maximum number of turning points.

$$(n-1)$$
 max. of 3 turns



## **Figure: Cubic relation**





$$y = ax^3 + bx^2 + cx + d, a < 0$$
**(b)**

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 

# **Example – Find the Model**

| Number x of<br>Textbooks,<br>(thousands) | Cost, C<br>(\$1000s) |  |  |  |
|------------------------------------------|----------------------|--|--|--|
| 0                                        | 100                  |  |  |  |
| 5                                        | 128.1                |  |  |  |
| 10                                       | 144                  |  |  |  |
| 13                                       | 153.5                |  |  |  |
| 17                                       | 161.2                |  |  |  |
| 18                                       | 162.6                |  |  |  |
| 20                                       | 166.3                |  |  |  |
| 23                                       | 178.9                |  |  |  |
| 25                                       | 190.2                |  |  |  |
| 27                                       | 221.8                |  |  |  |

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON** 



ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

**PEARSON**