Beginning Algebra

Professor Sikora
MAT0024C

CHAFTER1

FOUNDATIONS OF

ALGEBRA

1.1 Variables

VARIABLES $=$ letters

$=$ symbols
= represent possible number
What word do the VARIABLES spell? $\mathrm{m}^{2} \quad 4 \mathrm{at} \quad-17 \mathrm{~h}$
CONSTANT $=$ Symbol that does not vary in value. ex: $5,-2,10,200, \ldots$

1.1 Expressions
 ALGEBRAIC EXPRESSIONS =

1 OR MORE: numbers

variables arithmetic operators
Exs:

$$
[+,-, \cdot, \div]
$$

$$
3 \mathrm{x}-1, \frac{w+z}{5}, \quad 4 \mathrm{a}+7, \quad \begin{gathered}
\mathrm{bc} \text { (factors of } \\
\text { a product) }
\end{gathered}
$$

You evaluate an expression [when know values of
the variables]

1.1 Equations have an = sign [the verb]

 To $\underline{\text { Solve }}$ an eq. $\boldsymbol{\rightarrow}$ Find values of the variable [solutions] to make it trueIs 3 a solution of $2 \mathrm{x}^{2}+1=19$? $\mathrm{Y} \quad \mathrm{N}$

From $\mathrm{n}=\{1,2,3,4\}$, find the solution for $\mathrm{n}+9=12$

1.1 Inequalities [the verb]

Math Relationship with the verb symbol \rightarrow ($\neq,<,>, \leq$, or \geq).

Symbolic form	Translation
	Eight is not equal to three.
	Five is less than seven.
	Seven is greater than five.
	x is less than or equal to three.
	y is greater than or equal to two.

1.1 $\underline{\text { Set }}=$ Collection of objects

Objects are called elements or members.

Write the set containing the first four days of the week. Answer:
\{Sunday, Monday, Tuesday, Wednesday\}

Write the set containing multiples of 3 to 15 , inclusive.
Answer:

$$
\{3,6,9,12,15\}
$$

1.1 Rational \#

Rational number: Any real number that can be expressed in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

Ex: $\frac{3}{4}$

$$
-3
$$

. 153
.67
.$\overline{3}$
. 5
Rules for Rationals:
Fractions
Terminating Decimals
Non-terminating, repeating decimals

1.1 Irrational \# = not rational

Any real number that cannot be expressed in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

$$
\text { Ex: } \begin{array}{r}
\sqrt{3} \\
\sqrt{5} \\
\pi
\end{array}
$$

Rules for Irrationals:
Non-terminating, non-repeating decimals

1.1 Real \#'s categorized

Natural $==>\{1,2,3,4, \ldots\}$ ie. Counting \#'s Whole \#s ==> $\{0,1,2,3, \ldots\}$ Integers $=\{\ldots-2,-1,0,1,2,3, \ldots\}$

Rational \#s $=\{\mathrm{x} \mid \mathrm{x}$ is the quotient of 2 integers $\}$ Irrational \#s $=\{x \mid x$ is not the quotient of 2 integers\} Ex. $\sqrt{2}, \Pi$
REAL \#S $=\{\mathbf{x} \mid \mathbf{x}$ is rational or irrational \# $\}$

1.1 Real \#'s have positions on \# line Graph on a number line:

Natural \#s
Whole \#s
Integers

Rational \#s - fractions [proper, improper, mixed, terminating decimals, repeating decimals]
Irrational \#s - non-terminating, non-repeating decimals
\{see Venn Diagram on inside cover of book \& page 5\}
Be able to categorize any given real \#

1.1 Absolute Value

Abs. Value of a \# is it's distance [pos.] from $0 \quad|5|=5$ and $|-5|=5$

$$
|x|=\left\{\begin{array}{c}
x \text { if } x \geq 0 \\
-x \text { if } x<0
\end{array}\right.
$$

Distances [and thus ABSOLUTE VALUES] are always positive!

$$
|-\sqrt{3}|=
$$

$$
|-4.8|=
$$

1.1 Compare \#s on number line

$a>b$ if a to right of b on number line
$b<a$ if b to left of a on number line
Use $=$, <, or > in each box below:
$-15 \square-20$
-4.1 \square 0
$2 \frac{5}{6} \quad 2 \frac{1}{4}$
$|-.95| \square 9.5$

1.2 Fractions

numerator

deno min ator $\longleftarrow \neq 0$ and if so, fraction undefined
Mult. fractions: $\frac{a}{b} \bullet \frac{c}{d}=\frac{a c}{b d} \quad$ b $\& \mathrm{~d} \neq 0 \quad$ Exs:
\# - reciprocal of that \# $=1$ [KEEP - CHANGE - FLIP $]$
Divide fractions: $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \bullet \frac{d}{c}$ Exs:

1.2 Build/Simplify Fractions

2 fractions Equivalent if they represent the same \#
Build a fraction \rightarrow Mult. by a form of 1
Mult. Prop of 1: $1 \cdot \mathrm{a}=\mathrm{a} \& \mathrm{a} \cdot 1=\mathrm{a} \mathrm{a} \varepsilon$ Reals
Exs. Write $\frac{5}{8}$ as an equivalent fraction $\overline{24}$

Simplest form of a fraction [lowest terms]

Remove a factor of 1 Ex: Simplify $\frac{63}{42}$

$1.2+$ or - Fractions often need an $L C D$

- Least common multiple (LCM): The smallest number that is a multiple of each number in a given set of numbers.

Ex: LCM of 2 and 3 is \qquad
Ex: LCM of 3 and 4 is \qquad

- Least common denominator (LCD): The least common multiple of the denominators of a given set of fractions.

$1.2+$ or - Fractions

A) Same Denominator

$$
\frac{a}{d}+\frac{b}{d}=\frac{a+b}{d} \quad \frac{a}{d}-\frac{b}{d}=\frac{a-b}{d}
$$

B) Unlike Denominators

Find $\mathrm{LCD}=$ smallest $\#$ each denom \div s into evenly
1)Factor each denom
2) Take each factor that appears to its highest pwr
3) Mult these factors for LCD

$$
\text { Ex: } \frac{3}{4}-\frac{2}{5}=
$$

1.2 Fractions use factors \& factorization

 In multiplying: given factors \rightarrow find the product [ex: $2 \cdot 5 \cdot 7=70$]In factoring: given product \rightarrow find the factors [ex: $70=2 \cdot 5 \cdot 7]$

A \# w/ exactly 2 factors [the \# itself \& 1] = PRIME number (whole \#s > 1)
Composite number (whole \#s > 1) = not prime \#s
Prime Factorization $=$ when whole \# expressed as product of prime factors
1.2 Fractions use factors \& factorization Find the PRIME FACTORIZATION of:

1.3 Properties of Addition $[a, b, c \in R]$

Property
 Addition

Commutative

Associative

Additive Inverse $\quad \mathbf{a}+(-\mathbf{a})=0$

Be able to identify these properties when used!

1.3 Add Real \#s

- Methods:

- Using arrows on the Number Line - Applying RULES:

Add Integers [SAME SIGN]

* Add their Absolute Values
* Ans. has SAME sign

Ex: $2+3=$
Ex: $-5+(-4)=$

1.3 Add Real \#s

Add Real \#s [SAME SIGN] Review

* Add their Absolute Values
* Ans. has SAME sign Ex: $-2+(-5)=-7$

Add Real \#s [DIFFERENT SIGNS]

* Subtract their Absolute Values [big - sm.]
* Ans. has sign of larger Absolute Value

Ex: $4+(-5)=-1 \quad$ Ex: $-14+5=-9$

1.3 Add Several Real \#s

$(+9)+(+3)+(-7)=$

$-16+(-20)+5+11=$
$-7+13+(-5)+10=$

1.3 Subtract Real \#s

To SUBTRACT a number, add its Additive Inverse:

$$
\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})
$$

Use all those addition rules!

Ex: $-8-(-12)=$

Ex: $6+[(-1-4)-2]=$

Ex: $-(-14)-|-6|=$

MQ $\mathbf{1 . 1 ~} \boldsymbol{\rightarrow} \mathbf{1 . 3}$

1. What does an algebraic equation have that an algebra expression doesn't? Which one can be solved?
2. Translate: \mathbf{w} is less than or equal to 7
3. Give the Prime Factorization of 270 using exponents
4. What do we call a number that is the quotient of 2 integers?
5. Write the set of natural \#s less than 6
6. $-|-52|=$
7. Build an equivalent fraction to $\frac{9}{16}=w /$ denom. of 64
$8, \frac{23}{25} \div \frac{46}{5}=\quad 9 \cdot 8 \frac{2}{9}-7 \frac{2}{3}=16$ 10. Insert symbol: $\left|-2 \frac{2}{3}\right|--\frac{7}{3}$

1.4 Properties of Multiplication $[a, b, c \in R]$

Property $\mid \quad$ Multiplication
Commutative \quad ab = ba
Associative $\quad(\mathrm{ab}) \mathrm{c}=\mathbf{a}(\mathrm{bc})$
Mult. Prop of zero a $0=0$
Mult. Identity $\quad \mathbf{a} \cdot \mathbf{1}=\mathbf{a} \quad$ [1=Identity Elem for ${ }^{\circ}$]
Distributive
$a(b+c)=a b+a c$

Be able to identify these properties when used!

1.4 Multiplying Real \#s

Rules for products of signed \#s:

$$
+\cdots+=+\quad \text { and } \quad-\cdots=+
$$

Ex: $(-3)(-5)=$
Ex: $(-0.4)(2)=$
Ex: $-\frac{5}{8} \bullet \frac{16}{25}=$

1.4 Multiplying \& Dividing Real \#s

 * Multiplication \& Division are Inverse $\begin{aligned} & \text { Signs } \\ & \text { same }\end{aligned}$Operations. Thus:

1.4 Divide Real \#s

The Difference of 2 numbers \rightarrow add its Additive Inverse:

$$
a-b=a+(-b)
$$

The Quotient of 2 numbers \rightarrow mult. by its Reciprocal or Multiplicative Inverse:

Product $=1$

1.5 Exponents

$x^{n}->x$ to the $n^{\text {th }}$ power
 \uparrow exponent

 basePOWER \longrightarrow Repeated Multiples X $\cdot \mathrm{X} \cdot \mathrm{x} \cdot \mathrm{X} \ldots \mathrm{X}-\mathrm{P}$ n of these Ex: $4^{3}=4 \cdot 4 \cdot 4=_\quad(-4)^{3}=-4 \cdot-4 \cdot-4=$

$$
-\left(\frac{1}{2}\right)^{4}=-\quad\left(-\frac{1}{2}\right)^{4}=-
$$

1.5 Square Roots

Squares: the square of 5 is 25 'cuz $5^{2}=25$ and the square of -5 is 25 'cuz $(-5)^{2}=25$
Square Roots: 5 is the square root of 25
'cuz $5^{2}=25$
and -5 is the square root of 25
'cuz $(-5)^{2}=25 \quad b$ is square root of a if $b^{2}=a$
All positive \#s have 2 sq. roots. It's pos. sq. root $=$ principal square root

1.5 Square Roots

Square Root of $\mathbf{a}=> \pm \sqrt{a}[\mathrm{a}=$ positive real \#]
Note: $\sqrt{a}=$ represents the POSITIVE sq. root of a Ex:

$$
\sqrt{\frac{9}{16}}=
$$

1.5 Order of Operations

PLEASE (), [], \{ \}, | |, $\sqrt{ }$ EXCUSE exponents or roots MY multiplication DEAR division AUNT add $\underline{\text { SALLY subtraction }}$

1.5 Order of Operations

Ех $28-36 \quad 9(-5)=$

Ex $6|-5-4|+2(-3)^{3}=$

P
E
M D
A S

1.5 Order of Operations

Ex: $88-2\left[7^{2}-(12+8) \quad 4\right]=$

Ex: $-\frac{3}{5} \div \frac{1}{10} \bullet 4+\sqrt{64+36}$

1.5 Grouping Symbols

- Nested Parentheses: $2[5+3(4-1)]$ simplify inside \rightarrow outside*
- Fraction Bar: simplify numerator * \& denominator * then $\div \frac{2(7+8)+2}{3 \bullet 5+1}$
- Absolute Value Bars: work inside 1st $10^{3}+3|24-25|$
* Using Order of Operations

1.5 Arithmetic Mean [Average]

Mean of a set of values $\boldsymbol{\rightarrow} \div$ their sum

 by the \# of valuesaverage
Ex: Bruce has the following test scores in his biology class: $92,96,81,89,95,93$. Find the average of his test scores.
Ans:

$$
\begin{aligned}
\frac{92+96+81+89+95+93}{6} & =\frac{546}{6} \\
& =91
\end{aligned}
$$

1.6 Translating Basic Phrases

Addition Translatn	Subtraction Translation
The sum of x and 3	The difference of x and 3
h plus k	h minus k
7 added to t	7 subtracted from t
3 more than a number	3 less than a number
y increased by 2	y decreased by 2

1.6 Translating Basic Phrases

Multiplicatn Translation	DivisionTranslation The product of x and 3 h times k Twice a number n The quotient of x and 3 Triple the number n Two-thirds of a number nThe ratio of a to

1.6 Translating Basic Phrases

Exponents	Translatn	Roots
c squared	The square root of x	Translation
The square of b		
k cubed		
The cube of b		
n to the		
fourth power		
y raised to the fifth power		

MQ $1.4 \boldsymbol{\rightarrow 1 . 6}$

1-4 State the property: 1$)-20+(4+5)=-20+(5+4)$
2) $-20 \cdot(4 \cdot 5)=(-20 \cdot 4) \cdot 53) a \cdot 1=$ a 4) $4(x+2)=4 x+8$

5-7) Add or Subtract 5) $-\frac{3}{8}+\left(-\frac{1}{3}\right)$ 6) $-3+6+(-9)+(-6)$
7) $-4+5-(-3)-13$

8-10) Mult. or Divide 8) $-2 \frac{6}{25} \div \frac{4}{5}=9$) $\left(-\frac{5}{6}\right)\left(-\frac{2}{15}\right)$
10) Simplify

$$
(-3)^{2}+5[6-(2+1)]-\sqrt{49}
$$

1.7 Evaluating Algebraic Expressions

Find the value of $2 p^{3}$ if $p=3$
Find the value of $4 x-2 y$
if $x=6 \& y=9 \quad x+1$
Find the value of 1) $3 m^{2}$ 2) $(3 m)^{2}$ if $m=2$

Evaluate $m^{3}-6 n^{2}$ when $m=-2$ and $d=-5$

1.7 Values causing undefined expressions

Dividing by 0 is undefined

Ex:

8
 $x+6$

1.7 Distributive Prop. for exp. rewrite
 Distributive $\mathbf{a}(b+c)=\mathbf{a b}+\mathbf{a c}$ [also subtraction]

Ex: $\mathbf{3}(\mathbf{x}+\mathbf{1 2})=$

Ex: $-\mathbf{3}(\mathbf{x}-10)=$

1.7 Expressions

Terms separated by + or - sign
Product or quotient of \#s and/or variables
The coefficient is the numerical factor of a term \sim Identify it in these exs:

$$
\begin{aligned}
& 8 y^{3}-12 y^{2}+3 y-4 \\
& \frac{3}{5} x
\end{aligned}
$$

$-\frac{y}{5}$

1.7 Combine Like Terms for exp. rewrite

Use properties Ex: $-(7-6 k)+9=$
Be sure to arrow -1
thru parentheses
Terms of an Alg. Expression: separated by + or - sign
Combine like terms [same variables to same pwr]
Ex: $5(2 a-6)-3(4 a-9)=$

Ex: $\frac{3}{8} y-x+2-\frac{3}{4} y+5 x=$

MQ 1.7 \& Review

Evaluate: 1) $50-2(5)-7 \quad$ 2) $(3 \bullet 4)^{2}-4$
3) $9 \cdot 5-63$
4) $\left(2^{3}-14 \quad 7 \cdot 2\right)-2 \cdot 2+1$

$$
\text { 5) } \frac{4|9-7|+|-7|}{3^{2}-2^{2}}
$$

6) Translate to algebraic expression: The difference between 2 times a number (x) and 4
7) Evaluate: $3 \mathrm{x}^{2}-\frac{x}{2}$ for $\mathrm{x}=-2$ 8)When undefined? 3

$$
\overline{(x+3)(x-1)}
$$

9) Translate to algebraic expression: The absolute value of the quotient of a and two
10) Combine Like Terms: $\frac{1}{12} a+4 b+3+\frac{1}{6} a-b$.
