Beginning Algebra

Professor Sikora

FOUNDATIONS OF 7² ALGEBRA

Professor M. J. Sikora ~ Valencia Community College

1.1 Variables

VARIABLES = letters = symbols = represent possible number What word do the **VARIABLES** spell? m^2 -17h 4at **CONSTANT** = Symbol that does not vary in value. ex: 5, -2, 10, 200,...

1.1 **Equations** have an = sign [the verb]

To <u>Solve</u> an eq. \rightarrow Find values of the variable [solutions] to make it true Is 3 a solution of $2x^2 + 1 = 19?$ Y N

From $n = \{1, 2, 3, 4\}$, find the solution for n + 9 = 12

Professor M. J. Sikora ~ Valencia Community College

1.1 Inequalities [the verb]

Math Relationship with the verb symbol \rightarrow (\neq , <, >, ≤, or ≥).

Symbolic form	Translation	
	Eight is not equal to three.	
	Five is less than seven.	
	Seven is greater than five.	
	x is less than or equal to three.	
	y is greater than or equal to two.	

1.1 <u>Set</u> = Collection of objects Objects are called elements or members.

Write the set containing the first four days of the week. *Answer*:

{Sunday, Monday, Tuesday, Wednesday}

Write the set containing multiples of 3 to 15, inclusive. *Answer*:

{3, 6, 9, 12, 15}

1.1 **Rational #**

Rational number: Any real number that can be expressed inthe form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.Ex: $\frac{3}{4}$.3.67.3.5

Rules for Rationals:

Fractions

Terminating Decimals

Non-terminating, repeating decimals

1.1 <u>Irrational # = not rational</u>

Any real number that cannot be expressed in the form $\frac{a}{b}$, where *a* and *b* are integers and $b \neq 0$.

Ex: $\sqrt{3}$ $\sqrt{5}$ π

Rules for Irrationals:

Non-terminating, non-repeating decimals

1.1 Real #'s categorized

1.1 <u>**Real #'s**</u> have positions on # line Graph on a number line:

Irrational #s – non-terminating, non-repeating decimals

{see Venn Diagram on inside cover of book & page 5}

Be able to categorize any given real #

1.1 Absolute Value

<u>Abs. Value</u> of a # is it's distance [pos.] from 0 |5| = 5 and |-5| = 5

 $|\mathbf{x}| = \begin{cases} \mathbf{x} \text{ if } \mathbf{x} \ge \mathbf{0} \\ -\mathbf{x} \text{ if } \mathbf{x} < \mathbf{0} \end{cases}$

Simplify: |-23| = |23| = - |-23| =

Distances [and thus <u>ABSOLUTE VALUES</u>] are always **positive!**

> $|-\sqrt{3}| =$ |-4.8| =

1.1 <u>Compare #s</u> on number line

a > b if a to right of b on number line
b < a if b to left of a on number line
Use =, < , or > in each box below:

1.2 Fractions

 $\frac{numerator}{deno\min ator} \leftarrow fraction_bar$ $\frac{deno\min ator}{deno\min ator} \leftarrow 0 \text{ and if so, fraction undefined}$

Mult. fractions:
$$\frac{a}{b} \bullet \frac{c}{d} = \frac{ac}{bd}$$
 b & d \neq 0 Exs:

#• reciprocal of that # = 1 [KEEP – CHANGE – FLIP] Divide fractions: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \bullet \frac{d}{c}$ Exs: $\frac{a}{b} \cdot \frac{d}{c} = \frac{a}{b} \cdot \frac{d}{c}$ **1.2 Build/Simplify** Fractions 2 fractions Equivalent if they represent the same # Build a fraction \rightarrow Mult. by a form of 1 Mult. Prop of 1: $1 \cdot a = a \& a \cdot 1 = a \ a \varepsilon$ Reals Exs. Write $\frac{5}{8}$ as an equivalent fraction $\frac{1}{24}$

Simplest form of a fraction [lowest terms] Remove a factor of 1 Ex: Simplify $\frac{63}{42}$

1.2 <u>+ or – Fractions</u> often need an *LCD*

- *Least common multiple (LCM):* The smallest number that is a multiple of each number in a given set of numbers.
 Ex: LCM of 2 and 3 is _____
 Ex: LCM of 3 and 4 is
- *Least common denominator (LCD):* The least common multiple of the denominators of a given set of fractions.

1.2 <u>+ or - Fractions</u>

A) <u>Same</u> Denominator

- B) **Unlike** Denominators
 - Find LCD = smallest # each denom ÷s into evenly 1)Factor each denom
 - 2)Take each factor that appears to its **highest** pwr
 - 3) Mult these factors for LCD

1.2 Fractions use factors & factorization In multiplying: given factors → find the product [ex: 2 • 5 • 7 = 70]
In factoring: given product → find the factors [ex: 70 = 2 • 5 • 7]

- A # w/ exactly 2 factors [the # itself & 1] = PRIME number (whole #s > 1)
- **Composite number** (whole #s > 1) = not prime #s

<u>Prime Factorization</u> = when whole # expressed as product of prime factors

1.2 Fractions use factors & factorization Find the PRIME FACTORIZATION of:

1.3 **Properties of Addition** $[a,b,c \in R]$

Property	Addition
Commutative	$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$
Associative	(a + b) + c = a + (b + c)
Additive Identity	$\mathbf{a} + 0 = \mathbf{a}$ [0=Identity Elem for +]
Additive Inverse	a + (-a) = 0

Be able to identify these properties when used!

– Using <u>arrows</u> on the Number Line

-Applying <u>RULES:</u> _9 _5 0

Add Integers [SAME SIGN]

- * Add their Absolute Values
- * Ans. has **SAME** sign
- Ex: 2 + 3 =
- Ex: -5 + (-4) =

1.3 Add Real #s

Add Real #s [SAME SIGN] Review

- * Add their Absolute Values
- * Ans. has <u>SAME sign</u> Ex: -2 + (-5) = -7

Add Real #s [DIFFERENT SIGNS]

* <u>Subtract</u> their Absolute Values [big - sm.]

* Ans. has sign of larger Absolute Value

1.3 Add Several Real #s

(+9) + (+3) + (-7) =

-16 + (-20) + 5 + 11 =

-7 + 13 + (-5) + 10 =

Professor M. J. Sikora ~ Valencia Community College

Ex:
$$-8 - (-12) =$$

Ex:
$$6 + [(-1 - 4) - 2] =$$

Ex: -
$$(-14) - |-6| =$$

$MQ \underline{1.1} \rightarrow 1.3$

- What does an algebraic equation have that an algebra expression doesn't? Which one can be solved?
- 2. Translate: w is less than or equal to 7
- Give the Prime Factorization of 270 using exponents 3.
- 4. What do we call a number that is the quotient of 2 integers?
- 5. Write the set of natural #s less than 6
- 6. -|-52| = _____
- 6. -|-32| -7. Build an equivalent fraction to $\frac{9}{16} = w/$ denom. of 64 8. $\frac{23}{25} \div \frac{46}{5} = 9$. $8\frac{2}{9} 7\frac{2}{3} = \frac{16}{10}$ 10. Insert symbol: $|-2\frac{2}{3}| \frac{7}{3}$

1.4 **<u>Properties of Multiplication[a,b,c</u> \in \mathbb{R}]**

Property	Multiplication
Commutative	ab = ba
Associative	(ab)c = a(bc)
Mult. Prop of zero	$\mathbf{a} \cdot 0 = 0$
Mult. Identity	$\mathbf{a} \cdot 1 = \mathbf{a}$ [1=Identity Elem for •]
Distributive	a(b + c) = ab + ac

Be able to identify these properties when used!

Professor M. J. Sikora ~ Valencia Community College

1.4 Multiplying & Dividing Real #s

* Multiplication & Division are Inverse Operations. Thus:

Signs

same

1.4 Divide Real #s
The Difference of 2 numbers → add its Additive Inverse:

a - b = a + (-b)

The <u>Quotient</u> of 2 numbers → mult. by its Reciprocal or Multiplicative Inverse:

$$Product = 1$$

1.5 Exponents

1.5 Square Roots <u>Squares</u>: the square of 5 is 25 'cuz $5^2 = 25$ and the square of -5 is 25 'cuz $(-5)^2 = 25$ Square Roots: 5 is the square root of 25 'cuz $5^2 = 25$ and -5 is the square root of 25 $(-5)^2 = 25$ b is square root of a if $b^2 = a$ All positive #s have 2 sq. roots. It's pos. sq.

root = principal square root

1.5 Square Roots Square Root of a => $\pm \sqrt{a}$ [a = positive real #] Note: \sqrt{a} = represents the POSITIVE sq. root of a Ex: $\sqrt{\frac{9}{16}}$ =

1.5 Order of Operations

PLEASE (), [], { }, | , $\sqrt{}$ EXCUSE exponents or rootsMY multiplicationDEAR divisionAUNT addSALLY subtraction

Professor M. J. Sikora ~ Valencia Community College

1.5 Order of Operations

Ex 28 - 36 9(-5) =

Ex $6|-5-4|+2(-3)^3 =$

P E M D A S

Professor M. J. Sikora ~ Valencia Community College

1.5 Order of Operations

Ex: $88 - 2[7^2 - (12 + 8) - 4] =$

1.5 Grouping Symbols

- Nested Parentheses: 2[5+3(4-1)] simplify inside →outside*
- Fraction Bar: simplify numerator * & denominator * then $\div 2(7+8)+2$
- Absolute Value Bars: work inside 1st $10^3 + 3 |24 25|$
- * Using Order of Operations

 $3 \bullet 5 + 1$

1.5 Arithmetic Mean [Average]

Mean of a set of values \rightarrow ÷ their sum by the # of values average

Ex: Bruce has the following test scores in his biology class: 92, 96, 81, 89, 95, 93. Find the average of his test scores.

Ans: $\frac{92 + 96 + 81 + 89 + 95 + 93}{6} = \frac{546}{6} = 91$

1.6 Translating Basic Phrases Fill in

chart

Addition	Translatn	Subtraction Translation
The sum of <i>x</i> and 3		The difference of <i>x</i> and 3
<i>h</i> plus <i>k</i>		h minus k
7 added to t		7 subtracted from <i>t</i>
3 more than a number		3 less than a number
y increased by 2		y decreased by 2

1.6 Translating Basic Phrases

Fill in chart

Multiplicatn	Translation	Division	Translation
The product of <i>x</i> and 3		The quotient of <i>x</i> and 3	
h times k		h divided by k	
Twice a number n		h divided into k	
Triple the number n		The ratio of <i>a</i> to <i>b</i>	
Two-thirds of a number n			

1.6 Translating Basic Phrases

Fill in chart

Exponents	Translatn	Roots	Translation
c squared		The square root	
		of x	
The square of			
b			
k cubed			
The cube of			
b			
<i>n</i> to the			
fourth power			
y raised to			
the fifth			
power			M. J. Sikora ~ Valencia Community Colle

MQ <u>1.4 → 1.6</u>

- 1-4 State the property: 1) -20 + (4 + 5) = -20 + (5 + 4)2) $-20 \cdot (4 \cdot 5) = (-20 \cdot 4) \cdot 5$ 3) $a \cdot 1 = a$ 4) 4(x+2) = 4x+8
- **5-7**) Add or Subtract **5**) $-\frac{3}{8} + \left(-\frac{1}{3}\right)$ **6**) -3 + 6 + (-9) + (-6)**7**) -4 + 5 - (-3) - 13
- 8-10) Mult. or Divide 8) $-2\frac{6}{25} \div \frac{4}{5} = 9\left(-\frac{5}{6}\left(-\frac{2}{15}\right)\right)$ 10) Simplify

$$(-3)^2 + 5[6 - (2 + 1)] - \sqrt{49}$$

1.7 Evaluating Algebraic Expressions

Find the value of $2p^3$ if p = 3Find the value of 4x - 2yif x = 6 & y = 9 x+1Find the value of 1) $3m^2 = 2(3m)^2$ if m = 2

Evaluate $m^3 - 6n^2$ when m = -2 and d = -5

Professor M. J. Sikora ~ Valencia Community College

1.7 Values causing undefined expressions **Dividing by 0 is <u>undefined</u>** Ex: $\frac{8}{x+6}$ Ex: $\frac{2m}{(m-3)(m+4)}$

1.7 **Distributive Prop.** for exp. rewrite

Distributive a(b + c) = ab + ac [also subtraction]

Ex: 3(x + 12) =

Ex: -3(x - 10) =

1.7 **Expressions Terms** separated by + or - sign Product or quotient of #s and/or variables The **coefficient** is the numerical factor of a term ~ Identify it in these exs: $8y^3 - 12y^2 + 3y - 4$ 3 $\frac{1}{5}x$

1.7 Combine Like Terms for exp. rewrite

Use properties Ex: -(7-6k) + 9 =

Be sure to arrow -1 thru parentheses

<u>Terms</u> of an Alg. Expression: separated by + or - sign Combine <u>like terms</u> [same variables to same pwr] Ex: 5(2a - 6) - 3(4a - 9) =

Ex:
$$\frac{3}{8}y - x + 2 - \frac{3}{4}y + 5x =$$

MQ 1.7 & Review

Evaluate: 1) 50 - 2(5) - 7 2) $(3 \cdot 4)^2 - 4$ 3) $9 \cdot 5 - 6$ 3 4) $(2^3 - 14 \quad 7 \cdot 2) - 2 \cdot 2 + 1$ 5) $\frac{4|9 - 7| + |-7|}{3^2 - 2^2}$

6) Translate to algebraic expression: The difference between 2 times a number (x) and 4
7) Evaluate: 3x² - x/2 for x = -2 8)When undefined? 3 (x+3)(x-1)

9) Translate to algebraic expression: The absolute value of the quotient of a and two

10) Combine Like Terms: $\frac{1}{12}a + 4b + 3 + \frac{1}{6}a - b$.