Beginning Algebra

Professor Sikora

MAT0024C

Professor M. J. Sikora ~ Valencia Community College

CHARER2

SOLVING EQUATIONS \& INEQUALITIES

2.1 Solving Equations [ie math sentences]

Solutions or roots = \#s that when substituted for the variable(s), satisfies the equation \rightarrow makes it true

Ex: Is 25 a solution of $2(46-x)=41 ? ~ Y ~ N$

Ex: Is -2 a solution of $8 \mathrm{x}+18=2 ? \mathrm{Y} \mathrm{N}$

To solve an eq. \rightarrow find all variable values that make eq. true

2.1 Identity Eq. $=$ every real \# is solution

To determine if an equation is an identity:

1) Simplify expressions on each side of $=$ sign.
2) If, after simplifying, the expressions are identical, then the equation is an identity.
Ex: $2(3 \mathrm{x}-4)-10 \mathrm{x}=15-4(\mathrm{x}+2)$ Identity? Y or N

Ex: $0.5(3 y-8)=y-4+0.5 y \quad$ Identity? Y or N

2.1 Formulas from Geometry

Perimeter $=$ distance around
Area = surface enclosed

$$
\begin{align*}
& \mathrm{P}_{\mathrm{sq}}=4 \mathrm{~s} \\
& \mathrm{~A}_{\mathrm{sq}}=\mathrm{s}^{2}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{P}_{\text {rect }}=2 \mathrm{~L}+2 \mathrm{~W} \quad \square \mathrm{~W} \\
& \mathrm{~A}_{\text {rect }}=\mathrm{LW} \quad \square \quad \mathrm{~L}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\Delta}=\mathrm{a}+\mathrm{b}+\mathrm{c} \\
& \mathrm{~A}_{\Delta}=1 / 2 \mathrm{bh}
\end{aligned}
$$

$$
\mathrm{C}_{\text {circle }}=2 \pi \mathrm{r}
$$

$$
\mathrm{A}_{\mathrm{circle}}=\pi \mathrm{r}^{2}
$$

b
Memorize these! Other figures will have formulas given to you.

2.1 Formulas=a relationship betw variables

Sale price* $=$ orig price - discount $\mathbf{s}=\mathbf{p}-\mathbf{d}$
[$\mathrm{x}=$ orig. \$. If discounted 25%, subtract .25 x for sale \$]

Interest* $=$ principal \cdot rate $\cdot \operatorname{time} \mathbf{I}=\mathbf{P r t}$
Distance ${ }^{*}=$ rate \cdot time $\mathbf{d}=\mathbf{r t} \quad$ [units same]

* Must memorize 'cuz on competency test

2.1 Problem Solving Technique for word problems

Steps: 1) Chose a variable for what you are to find [Write: Let $\mathrm{x}=\ldots \quad$] Write out facts $[\mathrm{w} /$ your var.], pictures,....
2) Translate prob. to an equation [is $\boldsymbol{\rightarrow}=$, etc.]
3) Solve equation [legally w/ properties]
4) Answer question(s) asked [may be more than what x equals]
5) Check [Sub. solution into original and work down 'til both sides of $=$ sign the same. Then $\sqrt{ }$]

2.1 Problems using Formulas

A 13 ' x 20 ' room needs crown molding where the walls \& ceiling meet. a) Find the total molding length needed b) It comes in 12', strips. How many strips needed? c) Strips cost \$9 ea. Find total \$.
a)
b)
c)

2.2 Addition Principle of Equality

Linear Eq. \rightarrow variables raised to power of 1 only ADDITION Principle of equality: $a, b, c \in$ REALS Whatever you do to one side, you must do to the other!

$$
\left.\begin{array}{ll}
\text { If } & a=b \\
\text { When } & a+c=b+c
\end{array}\right\}
$$

Exs: Solve \& check [by substituting ans. back into original and work down both sides until same]

$$
w-15=45 \quad 75=b-38
$$

2.2 Addition Principle of Equality

Used to SUBTRACT quantity from both sides: $a, b, c \in R$ Whatever you do to one side, you must do to the other!
\(\left.\begin{array}{cc}If \& \mathbf{a}=\mathbf{b}

Then \& \mathbf{a}=\mathbf{c}=\mathbf{b}-\mathbf{c}\end{array}\right\}\)| EQUIVALENT EQS. $=$ |
| :--- |
| same solution |

Exs: Solve \& check [by substituting ans. back into original and work down both sides until same] $\mathrm{x}+12=20 \quad 15+\mathrm{y}=24 \quad-20+\mathrm{n}=29$

2.2 Addition Principle of Equality

Solve and Check:
Ex: $n-4 n+8=6 n-3-8 n$

Ans: $10=n$

2.2 SOLVING EQS. with INFINITE \# of Solutions Ex: $3 y-y+10=2 y-4+14$

Eqs. true for all values of variables $=$ IDENTITY

2.2 SOLVING EQS. with NO Solutions Ex: $3 w+8=6(w-1)-3 w$

Final Eq.	\# of Solutns.	Solutn Set	called
$\mathrm{x}=\mathrm{a} \#$ ex:x=2			solved
True ex: $0=0$			identity
False ex:5=8			contradiction

Professor M. J. Sikora ~ Valencia Community College

2.2 Addition Principle of Equality

Ex: Raul wants to buy a membership to a gym which costs $\$ 395$ for the year. He currently has saved $\$ 149$. How much more does he need?

Let $x=$ the amount Raul needs.

$$
x=\$ 246
$$

2.3 Multiplication Principle of Equality

MULT. Principle of equality: a,b,c \in REALS Whatever you do to one side, you must do to the other! If $\quad \mathbf{a}=\mathbf{b}$

Then $\mathrm{ca}=\mathrm{cb}$
Exs: Solve \& check $\frac{x}{4}=5$
$\frac{s}{14}=2$
$\frac{3}{4} y=24$
How can I get the variable lonely?

2.3 Multiplication Principle of Equality

Used to DIVIDE each side by same quantity : a,b,c \in REALS Whatever you do to one side, you must do to the other!

If $a=b$

$$
\frac{a}{c}=\frac{b}{c} \quad(c \neq 0)
$$

Exs: Solve \& check
$2 \mathrm{w}=40$

$$
12 \mathrm{k}=48
$$

How can I get the variable lonely?

\square

2.3 Steps for Solving Equations

4 Steps to solve a Linear Equation: $\mathrm{ax}+\mathrm{b}=\mathrm{c} ; \mathrm{a}, \mathrm{b}, \mathrm{c} \in R, \mathrm{a} \neq 0$

1) Simplify each side separately [clear () with Distrib, combine Like terms]
2) Isolate variable term on 1 side [use addition or subtraction prop. so var. term on 1 side \& \# term on other] Tip: Clear the variable term that has the lesser coefficient to avoid negative coefficients.
3) Isolate variable [use mult. or division prop. so variable term = \#] Box ans.
4) Check [substitute solution into original to see if a true statement results $\sqrt{ }$]

2.3 Multiplication Principle of Equality

Ex: Solve and check.
$-\frac{5}{4} x=\frac{3}{8}$

$$
x=-\frac{3}{10}
$$

Ex: Solve and check.
$2-5 y+5=3 y-2-1$

$$
y=-2
$$

2.3 Multiplication Principle of Equality

Ex: The perimeter of the figure shown is 72 inches. Find the width and the length.

$$
x=12.5
$$

2.3 Multiplication Principle of Equality

Ex: The Smith family is planning a 510 -mile trip. If their average speed is 68 MPH , how long will it take them to complete the trip?

$$
\mathrm{x}=7.5 \mathrm{hrs}
$$

Mini-Quiz $2.1 \rightarrow 2.3 \sim$ SHOw ALL wORK on bottom or back of strip

1) Solve: $2(x-4)+x=72) C k \# 1)$
2) Solve: $\frac{40-8 w}{5}=-2 w$ 4) $\left.\mathrm{Ck} \# 3\right)$
3) Solve: $4(y-3)-y=3(y-4)$
4) Solve: $-3(v+2)=-2 v-8-v$

$$
2
$$

7) Check if $\frac{2}{3}$ is a solution of: $6-(3 \mathrm{x}+2)=6 \mathrm{x}-4$ 8) In Solving: $\frac{2}{3} x=8$ mult. each side by
8) Solve \& ck: $\frac{2}{3} x=8$
9) If an equation has fractions, multiply thru by their

2.4 Solving Formulas - for a variable

Solve $A=1 / 2 b h$ for h

Solve $p=r-c$ for r

Solve $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$ for W

Solve $\mathrm{jm}+\mathrm{c}=\mathrm{n}$ for m

2.5 Translating Basic Phrases

Addition Translatn	Subtraction Translation
The sum of x and 3	The difference of x and 3
h plus k	h minus k
7 added to t	7 subtracted from t
3 more than a number	3 less than a number
y increased by 2	y decreased by 2

2.5 Translating Basic Phrases

Fill in chart

| Multiplicatn | Translation |
| :--- | :--- | Division | Translation |
| :--- |
| The product
 of x and 3 |
| h times k |
| and 3 |\quad| h divided by k |
| :--- |
| Twice a
 number n |
| Triple the
 number n |
| Two-thirds of
 a number n |

2.5 Translating Basic Phrases

The sum of thirty-five and a number is equal to 18 .

35

n
$=18$

Answer: $\mathrm{n}=-17$

2.5 Translating Basic Phrases

Eight less than five times a number is equal to thirty-seven.

$$
\text { Answer: } n=9
$$

2.5 Translating Basic Phrases

Ex: Nine times the sum of a number and seven subtracted from three times the number results in negative twenty-seven.

$$
\text { Answer } x=-6
$$

Mini-Quiz $2.4 \boldsymbol{>} 2.5 \sim$ SHOw ALL WORK on bottom or back of strip

1) Solve $A=P+$ Prt, for t 2) Solve for $x: y=m x+b$ 3) Solve for $h: V=\pi r^{2} h$
2) Translate to an eq.: Four less than three times a \# is 5 5) Solve eq. in 4)
3) Translate to an eq.: Three times the difference of a \# and 5 equals twice the \# and 3 7) Solve eq. in 6)
4) Solve: $2-(3 x+4)-(10-3 x)=5 x-29) C k 8)$
5) Solve: $\frac{w}{3}-5=\frac{w}{5}-3$

2.6 Linear Inequality \sim Set-builder notation

Linear inequality: An inequality containing expressions in which each variable term contains a single variable with an exponent of 1.

Examples of linear inequalities:

$$
x>5 \quad n+2<6 \quad 2(y-3) \leq 5 y-9
$$

Set builder notation

2.6 Linear Inequality ~ Interval Notation

[\#,__ or _ ,\#]: Graph Includes the associated point (\#,__ or _ , \#): Do not Include the associated point $(-\infty, \quad$ Begin with lowest unbounded neg. \# $\ldots, \infty) \quad$ End with highest unbounded pos.\#

Graph these solutions \& use Interval Notation to describe:

$$
x>4 \quad x \leq-2 \quad-1 \leq \mathrm{x}<3
$$

2.6 Addition Property of Inequality

$\mathrm{x} \leq 2$ Graph:

012
$x>-2$ Graph:

$$
-2-10
$$

$-1<\mathrm{x} \leq 2: \longleftrightarrow{ }_{-1}^{-}{ }_{2}=$ Interval
ADDITION PROP. OF INEQUALITY: $\mathrm{A}, \mathrm{B}, \mathrm{C} \in$ Reals:

Solve \& Graph: $-1+8 \mathrm{r}<7 \mathrm{r}+2 \mathrm{4}<\mathrm{x}+2<10$

2.6 Mult. Property of Inequality

MULTIP. PROP. OF INEQUALITY: $\mathrm{A}, \mathrm{B}, \mathrm{C} \in$ Reals, $\mathrm{C} \neq 0$
If C is positive
$\mathrm{A}<\boldsymbol{B}$
$\mathrm{AC}<\boldsymbol{B} \mathbf{C}$
A $<\mathrm{B}$

> AC > B C [reverse inequality]
Solve \& Graph: $-2 r>-12$ Solve \& Graph: $36<-9 y$

2.6 Solving Linear Inequalities

1. Simplify both sides of the inequality as needed.
a. Distribute to clear parentheses.
b. Clear fractions or decimals by multiplying through by the LCD just as we did for equations.
c. Combine like terms.
2. Legally get all variable terms are on one side of the inequality and all constants are on the other
3. Use the multiplication principle to clear any remaining coefficient. If you multiply (or divide) both sides by a negative number, reverse the direction of the inequality symbol!

2.6 Solving Linear Inequalities

 Solve $8 x+13>3 x-12$.Set builder notation: $\{x \mid x>-5\}$ Interval notation: $(-5, \infty)$

2.6 Translations for Linear Inequalities

Less Than:			
A number is less than 7.	$n<7$	A number is greater than 2.	$n>2$
A number must be smaller than 5.	$n<5$	A number must be greater than 3.	$n>3$
		A number must be more than -6.	$n>-6$
Less Than or Equal to:		Greater Than or Equal to:	
A number is at most 9.	$n \leq 9$	A number is at least 2.	$n \geq 2$
The maximum is 14.	$n \leq 14$	The minimum is 18.	$n \geq 18$

2.6 Translations for Linear Inequalities

Ex:Seven-eighths of a number is at least twenty-one.

$$
n \geq 24
$$

Mini-Quiz 2.6 \& Rev ~ SHOw ALL WORK on bottom or back of strip

 1) Solve: $6 x+12>-12$ 2) Write solution for 1) in setbuilder notation 3) Graph solution in 1) \& write solution in Interval Notation4) Solve: $6(y+1) \leq 4-8 y+3(5 y-1)$ 5) Write solution for 4) in set-builder notation 6) Graph solution in 4) \& write solution in Interval Notation
5) Solve for $\mathrm{C}: \quad F=\frac{9}{5} C+32$
6) Solve: $-\frac{1}{2}\left(c-3=\frac{1}{3} c-1\right.$
7) Solve: $5(b-2) \geq-(b-3)+2 b$
8) Will your Study Sheet for the Ch 2 Test include all of the important facts is RED, explanations in BLUE \& examples in PENCIL?
