Beginning Algebra

Professor Sikora

CHARER 2

5.15% 5.

2.1 Solving Equations [ie math sentences]
Solutions or roots = #s that when substituted for the variable(s), satisfies the equation → makes it true

Ex: Is 25 a solution of 2(46 - x) = 41? Y N

Ex: Is -2 a solution of 8x + 18 = 2? Y N

To solve an eq. \rightarrow find all variable values that make eq. true

2.1 **Identity Eq.** = every real # is solution

To determine if an equation is an identity:
1) Simplify expressions on each side of = sign.
2) If, after simplifying, the expressions are identical, then the equation is an identity.

Ex: 2(3x - 4) - 10x = 15 - 4(x + 2) Identity? Y or N

Ex: 0.5(3y - 8) = y - 4 + 0.5y Identity? Y or N

2.1 Formulas from Geometry

- **Perimeter** = distance around
- **Area** = surface enclosed

Memorize these! Other figures will have formulas given to you.

2.1 Formulas=a relationship betw variables

Sale price* = orig price – discount s = p - d

[x = orig. \$. If discounted 25%, subtract .25x for sale \$]

Interest* = principal • rate • time I = Prt

Distance^{*} = rate • time $\mathbf{d} = \mathbf{rt}$ [units same]

* Must memorize 'cuz on competency test

2.1 **Problem Solving Technique** for word problems

- Steps: 1) Chose a <u>variable</u> for what you are to find [Write: Let x = ___] Write out <u>facts</u> [w/ your var.], pictures,....
- 2) Translate prob. to an <u>equation</u> [is \rightarrow =, etc.]
- 3) <u>Solve</u> equation [legally w/ properties]
- 4) <u>Answer question(s) asked</u> [may be more than what x equals]
- 5) <u>Check</u> [Sub. solution into original and work down 'til both sides of = sign the same. Then $\sqrt{3}$]

2.1 Problems using Formulas

A 13' x 20' room needs crown molding where the walls & ceiling meet. a) Find the total molding length needed b) It comes in 12' strips. How many strips needed? c) Strips cost \$9 ea. Find total \$.
a)

b)

c)

Linear Eq. → variables raised to power of 1 only
ADDITION Principle of equality: a,b,c∈REALS
Whatever you do to one side, you must do to the other!

If a = bThen a + c = b + c EQUIVALENT EQS. =

Exs: Solve & check [by substituting ans. back into original and work down both sides until same] w - 15 = 45 75 = b - 38

Used to SUBTRACT quantity from both sides: a,b,c∈R *Whatever you do to one side, you must do to the other!*

If
$$a = b$$
EQUIVALENT EQS. =Then $a - c = b - c$ same solution

Exs: Solve & check [by substituting ans. back into original and work down both sides until same]

$$x + 12 = 20$$
 $15 + y = 24$ $-20 + n = 29$

Solve and Check:

Ex:
$$n - 4n + 8 = 6 n - 3 - 8n$$

Ans: 10 = n

2.2 <u>SOLVING EQS. with INFINITE # of Solutions</u>

Ex: 3y - y + 10 = 2y - 4 + 14

Eqs. true for all values of variables = **IDENTITY**

2.2 SOLVING EQS. with NO Solutions Ex: 3w + 8 = 6(w - 1) - 3w

Final Eq.	# of Solutns.	Solutn Set	called
x=a # ex:x=2			solved
True ex: 0=0			identity
False ex:5=8		(contradictic

Ex: Raul wants to buy a membership to a gym which costs \$395 for the year. He currently has saved \$149. How much more does he need?

Let x = the amount Raul needs.

$$x = $246$$

MULT. Principle of equality: a,b,c∈REALS *Whatever you do to one side, you must do to the other!*

Used to DIVIDE each side by same quantity : a,b,c∈REALS *Whatever you do to one side, you must do to the other!*

2.3 Steps for Solving Equations

- 4 Steps to solve a Linear Equation: ax + b = c; $a,b,c \in R$, $a \neq 0$
- 1) <u>Simplify each side separately</u> [clear () with Distrib, combine Like terms]
- 2) Isolate variable term on 1 side [use addition or subtraction prop. so var. term on 1 side & # term on other] Tip: Clear the variable term that has the lesser coefficient to avoid negative coefficients.
- 3) <u>Isolate variable</u> [use mult. or division prop. so variable term = #] Box ans.
- 4) <u>Check</u> [substitute solution into original to see if a true statement results $\sqrt{}$]

Ex: Solve and check.

$$-\frac{5}{4}x = \frac{3}{8}$$

 $\mathbf{x} = -\frac{3}{10}$

Ex: Solve and check.

$$2-5 y+5 = 3 y-2 -1$$

Ex: The perimeter of the figure shown is 72 inches. Find the width and the length.

$$x = 12.5$$

Ex: The Smith family is planning a 510-mile trip. If their average speed is 68 MPH, how long will it take them to complete the trip?

Mini-Quiz 2.1 \rightarrow 2.3 ~ SHOW ALL WORK on bottom or back of strip 1) Solve: 2(x - 4) + x = 72 Ck #1) 3) Solve: $\frac{40-8w}{5} = -2w$ 4) Ck #3) 5) Solve: 4(y - 3) - y = 3(y - 4)6) Solve: -3(v + 2) = -2v - 8 - v7) Check if $\frac{2}{3}$ is a solution of: 6 - (3x + 2) = 6x - 48) In Solving: $\frac{2}{3}x = 8$ mult. each side by _____ 9) Solve & ck: $\frac{2}{3}x = 8$

10) If an equation has fractions, multiply thru by their _____

2.4 Solving Formulas – for a variable

Solve $A = \frac{1}{2bh}$ for h

Solve p = r - c for r

Solve P = 2L + 2W for W

Solve jm + c = n for m

Fill in

chart

Addition	Translatn	Subtraction Translation
The sum of x		The difference
<i>h</i> plus <i>k</i>		h minus k
7 added to t		7 subtracted
		from <i>t</i>
3 more than a		3 less than a
number		number
y increased		y decreased by 2
by 2		

Fill in chart

Multiplicatn Translation	Division Translation
The product of <i>x</i> and 3	The quotient of <i>x</i> and 3
h times k	h divided by k
Twice a number n	<i>h</i> divided into <i>k</i>
Triple the number n	The ratio of <i>a</i> to <i>b</i>
Two-thirds of a number n	

35

The sum of thirty-five and a number is equal to 18.

+

n

Professor M. J. Sikora ~ Valencia Community College

18

Eight less than five times a number is equal to thirty-seven.

Ex: Nine times the sum of a number and seven subtracted from three times the number results in negative twenty-seven.

Mini-Quiz 2.4 \Rightarrow 2.5 ~ SHOW ALL WORK on bottom or back of strip 1) Solve A = P + Prt, for t 2) Solve for x: y = mx + b 3) Solve for h: V = $\pi r^2 h$

- 4) Translate to an eq.: Four less than three times a # is
 5 5) Solve eq. in 4)
- 6) Translate to an eq.: Three times the difference of a # and 5 equals twice the # and 3 7) Solve eq. in 6)
- 8) Solve: 2 (3x + 4) (10 3x) = 5x 2 9) Ck 8)

10) Solve:
$$\frac{w}{3} - 5 = \frac{w}{5} - 3$$

2.6 Linear Inequality ~ Set-builder notation

Linear inequality: An inequality containing expressions in which each variable term contains a single variable with an exponent of 1.

Examples of linear inequalities:

2.6 Linear Inequality ~ Interval Notation

- [#,_____ or ____,#]: Graph Includes the associated point
- (#,_____ or ____,#): Do not Include the associated point
- (- ∞ , ______ Begin with lowest unbounded neg. # _____, ∞) End with highest unbounded pos. #

Graph these solutions & use <u>Interval Notation</u> to describe:

$$x > 4 \qquad x \le -2 \qquad -1 \le x < 3$$

2.6 Addition Property of Inequality

2.6 Mult. Property of Inequality **MULTIP. PROP. OF INEQUALITY:** A,B,C \in Reals, C \neq 0 A < BIf C is positive AC < BCA < BIf C is negative AC > BC [reverse inequality] Solve & Graph: -2r > -12 |Solve & Graph: 36 < -9y

2.6 Solving Linear Inequalities

- 1. Simplify both sides of the inequality as needed.
 - a. Distribute to clear parentheses.
 - b. Clear fractions or decimals by multiplying through by the LCD just as we did for equations.
 - c. Combine like terms.
- 2. Legally get all variable terms are on one side of the inequality and all constants are on the other
- 3. Use the multiplication principle to clear any remaining coefficient. If you multiply (or divide) both sides by a negative number, reverse the direction of the inequality symbol!

2.6 Solving Linear Inequalities

Solve 8x + 13 > 3x - 12.

2.6 Translations for Linear Inequalities

Less Than:		Greater Than:
A number is less than 7.	<i>n</i> < 7	A number is $n > 2$ greater than 2.
A number must be smaller than 5.	<i>n</i> < 5	A number must $n > 3$ be greater than 3.
		A number must $n > -6$ be more than -6.
Less Than or Equal to:		Greater Than or Equal to:
A number is at most 9.	<i>n</i> ≤ 9	A number is at $n \ge 2$ least 2.
The maximum is 14.	$n \leq 14$	The minimum is $n \ge 18$ 18.Professor M. J. Sikora ~ Valencia Community College

2.6 Translations for Linear Inequalities

Ex:Seven-eighths of a number is at least twenty-one.

 $\cdot n \ge 21$

$n \ge 24$

Mini-Quiz 2.6 & Rev ~ SHOW ALL WORK on bottom or back of strip 1) Solve: 6x + 12 > -12 2) Write solution for 1) in setbuilder notation 3) Graph solution in 1) & write solution in Interval Notation 4) Solve: $6(y + 1) \le 4 - 8y + 3(5y - 1)$ 5) Write solution for 4) in set-builder notation 6) Graph solution in 4) & write solution in Interval Notation 7) Solve for C: $F = \frac{9}{5}C + 32$ 8) Solve: $-\frac{1}{2}$ (6c-3) = $\frac{1}{3}c-1$ 9) Solve: 5(b - 2) > -(b - 3) + 2b

10) Will your Study Sheet for the Ch 2 Test include all of the important facts is RED, explanations in BLUE & Professor M. J. Sikora ~ Valencia Community College examples in PENCIL?