

Professor M. J. Sikora ~ Valencia Community College

CHARER 3

PROBLEM

3.1 Ratios \& Proportions
 Ratio = Quotient of 2 \#s or 2 quantities
 [a way to compare numerical quantities]
 Ex: $\frac{7}{9} \quad$ Ex: 21 to 27 Ex: $35: 50$

Are any of these ratios equal?

Ex: Express the ratio 3.2 to 16 in lowest terms

Ex: Express the ratio 1 foot to 2 yds in lowest terms [make units same]

3.1 Ratios, Rates, \& Proportions

$\underline{\text { Unit Ratio }}=$ Ratio w/ denominator $=1$
[ex: cost per pound or cost per oz.]
Ex: Which is a better buy? 12 oz Coke for $79 \notin$ or a 16 oz Coke for 99 ¢

Rate = Compare quantities of different units

Ex: miles per hour [MPH]
Ex: What is the hourly rate for $\$ 640$ earned for 40 hrs work?

3.1 Ratios, Rates, \& Proportions

Ratio $=$ Comparison by division a to b, $\mathrm{a}: \mathrm{b}$ or $\quad \frac{\boldsymbol{a}}{\boldsymbol{b}}$ [units the same]
Proportion $=2$ equal ratios: $[b, d \neq 0]$ $\frac{\boldsymbol{a}}{\boldsymbol{b}}=\frac{\boldsymbol{c}}{\boldsymbol{d}}$ iff [if \& only if] ${ }^{\text {extremes }}=\mathbf{b} \mathbf{b c}^{\text {means }}$
$[$ Read a is to b as c is to $d]$

Ex: Is $\frac{21}{15}=\frac{62}{45}$ a proportion? Y or N

3.1 Solving Proportions

Solve equations involving Proportions

$$
\operatorname{Ex} \frac{12}{18}=\frac{3}{x} \quad \operatorname{Ex} \frac{a+6}{2 a}=\frac{1}{5}
$$

Set up $[----]$ for word problems:
Ex: If 7 shirts cost $\$ 87.50$, find the cost of 11 shirts.
3.1 Similar Δ s have corresponding sides pptnl

Similar $\Delta \mathrm{s}=$ same shape; different

$\Delta \mathrm{ABC} \sim \Delta$ DEF means $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
Ex: A tree casts a shadow of 18^{\prime} when a 5^{\prime} person casts a shadow of 1.5^{\prime} How tall is the tree?

Note: Similar figures [trapezoids, pentagons, ...] also have pptnl sides.

3.2 ~ \% Problems - Rewriting

Percent: Ratio representing some part of 100
Ex: Write as reduced fraction \& as a decimal: $26 \%=$
[by 100]
Ex: Write a fraction or decimal as a \%: $\frac{3}{8}=$
[mult. By 100\%]
$0.486=$

3.2 ~ \% Problems - Use translation \& algebra

Translation:

What => n
of $=>$ times
is => equals
__\% => ._-

What is 28% of 270 ?

14 is what $\%$ of 52 ?

80 is 20% of what number?

3.2 ~ \% of Increase/Decrease

1) Find amt. of incr. by subtracting initial from final amt.
2) Solve for P in proportion: $\frac{P}{100}=\frac{a m t_{_} i n c \text {. }}{\text { initial_amt. }}$

Ex: A pediatrician plots the growth of a child as growing from 27.5 inches to 31.25 inches. What is the percent of increase?
$\frac{P}{100}=\frac{3.75}{27.5} \leftarrow$ Part Amt of increase $=31.25-27.5=3.75$

$$
27.5 P=375
$$

$$
\frac{27.5 P}{27.5}=\frac{375}{27.5}
$$

$$
P=13.6
$$

Answer The percent of increase in growth is 13.6%.

3.3 Problems Translate word situation \rightarrow equation

Steps: 1) Chose a variable for what you are to
find [Write: Let $\mathrm{x}=\ldots \quad$] Write out facts [w/ your var.], pictures,....
2) Translate prob. to an equation [is $\boldsymbol{\rightarrow}=$, etc.]
3) Solve equation [legally w/ properties]
4) Answer question(s) asked [may be more than what x equals]
5) Check [Sub. solution into original and work down 'til both sides of $=$ sign the same. Then $\sqrt{ }$]

3.3 ~ Problems Translate word situation \rightarrow equation

Ex: One positive \# is one-third another positive \#. The larger \# minus the smaller \# is equal to 15 . Find both \#s.
Let $\mathrm{x}=$ \qquad then \qquad
Eq:
Solve:
$22.5 \& 7.5$

Ex: The perimeter of a rectangular frame is 36 cm . The length is 3 less than twice the width. Find length \& width.

$11 \mathrm{~cm} \& 7 \mathrm{~cm}$

3.3 ~ Problems w/ 2 or more unknowns

Note: Supplementary /s sum to $180^{\circ} \&$ Complementary /s sum to 90°
Ex: One I is 6° less than 3 times it's complement. Find both \underline{I}

Ex: The sum of 3 consecutive integers is 96 . Find th 6° \& 24° Ex: The sum of 3 consecutive integers is 96 . Find them.

31, 32, 33
Ex: Find the meas. of all $3 \underline{I}$ s of a Δ if the $2^{\text {nd }} \underline{I}$ is twice the $1^{\text {st }} \underline{I}$ and the $3^{\text {rd }}$ is 20 less than the $2^{\text {nd }}$ /
Note: Sum of $_$measures of a $\Delta=\mathbf{1 8 0}^{\circ}$

3.3 ~ Given a Total in a problem
 Let $\mathrm{x}=$ one item \& Total \# - $\mathrm{x}=$ other item

Ex: Jon has some $\$ 5$ bills \& $\$ 10$ bills in his wallet, If he has a total of 16 bills worth a total of $\$ 110$, how many of each bill is in his wallet.
Note: $\$ \cdot a m t+\$ \cdot a m t=$ Total amt
ten $\$ 5$ bills, six $\$ 10$ bills

Mini-Quiz $3.1 \rightarrow 3.3 \sim$ SHOW ALL WORK

1) Translate to eq.:What is 60% of 200 ? 2) Solve 1)
2) Translate to eq.: 75 is 20% of what \#? 4) Solve 2) 5-8) Show set up: [---] \& use proportions to solve:
3) If a car travels 91 mi. in 2 hrs ., how far will it travel in 7 hrs ?
4) 2 shirts cost $\$ 25$, how much will 5 shirts cost?
5) A chef needs 4 large bottles of ketchup to make $2 \frac{1}{3}$ gal. of sauce. How many bottles for 10 gal. sauce?
6) If a 5 ft . person casts a 6 ft . shadow, how tall is a building that casts a 30 ft . shadow in the same sun?
7) Translate to eq.:The sum of Sam \& Jan's age is 51 . Sam is 2 yrs older than 6 times Jan's age. Their ages?10) Solve 9)
3.4 ~ \% Decrease or \% Increase Probs Decrease: \$Orig - \%Decr. of \$Orig = \$Sale Ex: Find the Original price (x) of a shirt that is now 30% off resulting in a sale price of $\$ 28.00$

Increase: \$Orig + \%Incr. of \$Orig = \$Final

3.4 ~ Rate Problems ~DISTANCE

Distance $=$ Rate \cdot Time $[\mathbf{d}=\mathbf{r t}]$

Diagram Motion Problems ~ Ex: 2 cars are traveling in opposite directions, 1 @ 40mph \& the other @ 50 mph . When will they be 180 miles apart?

180 mi.
Eq.

3.4 ~ Rate Problems

Note: $\mathbf{d}=\mathbf{r} \cdot \mathbf{t}$
Objects traveling in opposite directions: Ex: 2 trains leave the station at the same time in opposite directions. One @ $40 \mathrm{MPH} \&$ other @ 55 MPH. In how many hrs will they be 190 miles apart?

2 hrs

3.4 ~ Rate Problems

Note: $\mathbf{d}=\mathbf{r} \cdot \mathbf{t}$
Objects traveling in same direction: Ex:
Two trains are delivering to the same site. One leaves at 8:00 a.m. and the other leaves at 8:15 a.m. If the first train is traveling at 55 mph and the second at 60 mph , at what time will the second catch up to the first?

3.5 ~ Investment Problems $I=$ Prt

(I)nterest=(P)rincipal $\bullet(\mathbf{r})$ ate $[\%$ as decimal] $\cdot(\mathbf{t})$ ime[in yrs]

Ex [easy]: Plug \& Chug: How much interest on $\$ 2000$ invested at 5% for 8 years?

Problem below = Extra Credit

Ex: You invest a total of $\$ 4000$ in two different accounts. The first account earns 6% while the second account earns 4%. If the total interest earned is $\$ 210$ after one year, what principle was invested in each account?

Accounts	Principal	Rate	Interest
First	$4000-P$	0.06	
Second	P	0.04	

$$
0.06(4000-p)+0.04 p=210
$$

What can you mult. each term by?
Answer The principal invested in the second account is $\$ 1500$. In the first account is $\$ 4000-\$ 1500=\$ 2500$.

3.5 ~ Investment Problems $\mathrm{I}=\mathrm{Prt}$

Problem below = Extra Credit
(I)nterest $=(\underline{\mathbf{P}})$ rincipal ${ }^{\circ}(\underline{\mathbf{r}})$ ate [\% as decimal] $\bullet(\mathbf{t})$ ime[in yrs]

Ex: You invest some $\$$ @ 8% and $\$ 3000$ more than twice as much @ 10%. Total annual income from this is $\$ 2540$. How much invested @ 8\%?

Principal	Rate	Interest
P	.08	.08 P
$2 \mathrm{P}+3000$.10	$.10(2 \mathrm{P}+3000)$

Eq: $\quad .08 \mathrm{P}+.10(2 \mathrm{P}+3000)=2540$

Ans: $\$ 8000$

Mini-Quiz $3.4 \rightarrow 3.5 \sim$ SHOW ALL WORK

 1-5) Distance Prob:Two trains are traveling toward each other from a distance of 208 miles. One train is traveling at 18 miles per hour and the other at 46 miles per hour. How long will it take for them to pass each other?

Problem below = Extra Credit
6-10) Distance Prob: [see page 214 ~ Your Turn 2]

Juan \& Angela are bicycling along the same trail. Juan passes a marker @ 9:00 am, and Angela passes the same marker @ 9:05 am. Juan is traveling 8 mph while Angela is traveling 10 mph . What time will Angela catch up to Juan?
$\mathrm{J}: 9: 00 \mathrm{am} \longrightarrow$ Time $=\mathrm{t}$
A: 9:05 am \longrightarrow Time $=$

