

CHARERS

GRAPHING LINEAR EQUATIONS

4.1 The Rectangular Coordinate System

4.1 The Coordinate Plane

4.1 Pts linear or non-linear? $(-5,7),(-1,3),(2,0)$, $(4,-2),(6,-4)$

4.2 Linear Eqs. ~ 2 Variables

Linear Equation in 1 variable: $\mathrm{A}, \mathrm{B} \in$ Reals $\mathrm{Ax}+\mathrm{B}=0 \quad \mathrm{~A} \neq 0 \quad \mathrm{Ch} 2$ graphs $=$ pt. on a line Linear Equation in 2 variables: $\mathrm{A}, \mathrm{B}, \mathrm{C} \in$ Reals $A x+B y=C \quad A \& B$ both $\neq 0$

We are going to graph these now in
the rectangular coordinate system

4.2 Linear Eqs. ~ 2 Variables

Solution to a Linear Equation in 2 variables: $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$ is (x, y) an ORDERED PAIR [Note: the x is always $1^{\text {st }} \& \mathrm{y}$ always $\left.2^{\text {nd }}\right]$
Ex: Is $(2,-5)$ a solution of $5 \mathrm{x}+2 \mathrm{y}=20$? Y N

Ex: Complete the ordered pair (__, 7) for

$$
y=2 x-9
$$

4.2 Linear Eqs. ~ 2 Variables - Table

Ex: Complete the table of values for $2 x-3 y=12$ then write results as ordered prs:

4.2 Graphing:Linear Eqs. ~2 Variables

Graph the Linear Eq: $5 \mathbf{x}+2 \mathbf{y}=-10$ Use 3 entries in a table of values for your 3 ordered pairs:

Use x -intercept [when $\mathrm{y}=0$]
Use y -intercept [when $\mathrm{x}=0$]
Use $3^{\text {rd }}$ pair as a check

4.2 Identifying Linear Eqs.

Linear Equation in 2 variables: $\mathrm{A}, \mathrm{B}, \mathrm{C} \in$ Reals

$\mathrm{Ax}+\mathrm{By}=\mathrm{C} \Rightarrow$ GENERAL FORM $[\mathrm{A} \& \mathrm{~B}$ both $\neq 0]$
Write with $A, B \& C$ as Integers \& $A \geq 0$
Exponents of $\mathrm{x} \& \mathrm{y}$ must be 1 for eq. To be Linear

Ex: Solve for y , generate a (x, y) table of Integers \& Graph:

$$
3 y=3+x
$$

4.3 Graphing:Eqs. ~ using Intercepts

Find intercepts of: $5 \mathbf{x}+2 \mathbf{y}=10() ;,($,

Find intercepts of: $2 \mathbf{x}-3 \mathbf{y}=12$ (,); ()

Find intercepts of: $4 \mathrm{x}-2 \mathrm{y}=0$
Graph of equation: $\mathrm{Ax}+\mathrm{By}=0$ passes through

4.3 Graphing:Linear Eqs. ~2 Variables

Graph of equation: $\mathrm{y}=\mathrm{k}$ is
Ex: $y+5=0$

Graph of equation: $\mathrm{x}=\mathrm{k}$ is
Ex: $x=2$

Mini-Quiz $4.1 \boldsymbol{\rightarrow} 4.3$ Draw 4 xy-axes on ans sheet back 1-3 [top axis] Plot \& label A(-3, 1) B(4, -2$) \mathrm{C}(-2,0)$
[on front] Specify quadrant or axis for the location $\begin{array}{lll}\text { of your } 3 \mathrm{pts}: 1) \mathrm{A} & \text { 2) B } & 3) \mathrm{C}\end{array}$
4) Which of these equations are LINEAR?

$$
\begin{array}{llll}
\text { A) } y=x^{2} & \text { B) } y=2 x-3 & \text { C) } y=|x| & \text { D) } 2 x+3 y=7
\end{array}
$$

5) Identify \& write as ordered pairs the $x \& y-$ intercepts for: $-4 \mathrm{x}+2 \mathrm{y}=8$
6) Is $(-3,5)$ a solution of $4 x+3 y=3$? Y or N
7) Is $(-3,5)$ a solution of $y=|2+x| ? \quad Y$ or N

8-10) Put table of 3 integer values sideways of front $\&$ graph on the 3 remaining axes on the back:
8) $3 x+2 y=6 \quad 9) y=4 \quad$ 10) $x=-2$

4.4 Slope of a Line

Slope - Slant uphill ${ }^{\text {cor Slant downhill }}$漛 - Steepness of h
very steep ---------------------------------->> least steep

Black Diamond $=============>$ Easy Circle

4.4 Slope of a Line

Slope of a line ==> Ratio of the rise [Vert. Change] to the run [Horiz. Change]

4.4 Slope of a Line

Every line has a SLOPE

Horiz. $=0$ slope
Vert. $=$ undefine
slope

4.4 Slope of a Line

- Line positions that DO have slope::

- Slope of line thru 2 pts: $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \&\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$ is $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \leftarrow$ Vertical change (rise)
- Pos. slope --> Incre. --> slant up
- 0 slope --> no change --> horizontal
- Neg. slope--> Decre. --> slant down

4.4 Slope of a Line
 Slope $=\mathbf{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \mathrm{x}_{1} \neq \mathrm{x}_{2}$
 $$
x_{2}-x_{1}
$$

Ex: Find slope of line thru $(-5,3) \&(2,1)$

Ex: Find slope of line thru $(4,3) \&(1,-1)$

Always: Label one pt. $\mathbf{x}_{1}, \mathbf{y}_{1} \&$ other $\mathbf{x}_{\mathbf{2}}, \mathbf{y}_{\mathbf{2}}$

4.4 Slope of a Line

$$
\text { Slope }=\mathbf{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
x_{1} \neq x_{2}
$$

Ex: Find slope of a line thru $(-1,-2)$ and $(1,-7)$

Ex. Graph a line thru ($3,-5$) with slope of

$$
-\frac{2}{5}
$$

4.4 Slope of a Line

Slope: $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
X_{1} \neq X_{2}
$$

Find slope of the Horizontal line thru
$(-5,3) \&(2,3) \rightarrow$ eq: $\mathbf{y}=\mathbf{k} \|$ slope 0
Find slope of the Vertical line thru $(-5,3)$
$\&(-5,1) \rightarrow$ eq: $\mathbf{x}=\mathbf{k} \|$ slope undefined
4.4 Find Slope from the eq.of a Line

Steps to Find Slope from the eq.of a Line:
(1)Solve the equation for y
(2)The slope [m] is the coefficient of x
(3) The y-intercept is the $(0, b)$ in

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

SLOPE-INTERCEPT FORM

Ex: Find the y-int \& slope of : $3 x+2 y=6$
\& graph it

4.4 Using $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ to graph equations

Ex: Find the y-int \& slope of : $4 x-3 y=12$ \& graph it

Ex: Find the y-int \& slope of : $2 x+y=4$ \& graph it.

4.4 Find Slope from the eq.of a Line

Graph each of the following on the same grid.
$y=x$
$y=3 x$

$$
y=4 x
$$

Solution Complete a table of values.

If x is	$y=x$	$y=3 x$	$y=4 x$
0	0	0	0
1	1	3	4
2	2	6	8

4.4 Slope of Parallel Lines

Parallel Lines in coord. Plane:

Never Intersect
If non-vertical, then slopes are equal

4.4 Slope of Perpendicular Lines

Perpendicular Lines in coord. Plane:
If product of slopes $=-1==>$ lines \perp
[Negative reciprocals]
If vertical \& horizontal $==>$ lines \perp
Ex: Decide if these lines are $\|, \perp$, or neither: $3 x-y=4$

$$
x+3 y=9
$$

Mini-Quiz 4.4 \& Review

1) Which ordered pair is a solution of equation $3 x-2 y=-6$?
a) $(-4,3)$
b) $(1,5)$
c) $(2,0)$
d) $(0,3)$
2) \& 3) For the equation $7 x-2 y=14$, find the 2) x - and 3) y-intercepts. Write these as ordered pairs
3) \& 5) Find the slope of line thru 4) $(-5,-2) \&(7,-5)$ and 5) $(4,-1) \&(-3,-1)$
4) For the equation $-2 x+5 y=-20$, determine the slope and the y-intercept. Then draw axes $\&$ graph the equation. on back for 7)
5) Write the slope of a line parallel to: $2 x-y+7=0$
6) Write the slope of a line perpendicular to that in 8)
7) Are $5 x-3 y=11 \& 3 x+5 y=8 \|$, \perp, or neither?
