

CHATHER6

POLYNOMIALS

6.1 Positive Integer Exponents

$x^{n}=x \cdot x \cdot x \cdot x \cdot x$ [n of these x factors $]$
base
Numerical:
Ex: $-3^{4}=\quad$ where as Ex: $\quad(-3)^{4}=$

Ex: $-3^{3}=\quad$ and Ex: $(-3)^{3}=$
Rule: Neg \# to even exponent = __ \#, Neg \# to odd exponent = ___\#,
Ex: $\left(-\frac{2}{3}\right)^{3}=$

6.1 Power Rules for Exponents POWER OF A OUOTIENT $\mathrm{b} \neq 0$

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

Ex: Simplify $\left(\frac{3}{x}\right)^{3} \mathrm{x} \neq 0$
Ex: $\left(-\frac{2 x^{3}}{3 y^{2}}\right)^{4}$
6.1 Zero Exponents ZERO EXPONENT [$\mathrm{x} \neq 0$]
$\mathrm{X}^{\mathrm{O}}=1 \quad{ }^{6} \operatorname{cuz} \frac{4^{3}}{4^{3}}=4^{3-3}=4^{0} \& \frac{4^{3}}{4^{3}}=\frac{4}{4} \bullet \frac{4}{4} \bullet \frac{4}{4}=1$
Ex: $(-7)^{0}=$
Ex: $-7^{0}=$
Ex: $-(-7)^{0}=$

6.1 Neg. Integer Exponents

 NEGATIVE EXPONENT $[a \neq 0, n$ integer $]$ $\mathrm{a}^{-\mathbf{n}}=\frac{1}{a^{n}} \cdot \operatorname{cuz} \frac{4^{2}}{4^{5}}=4^{2-5}=4^{-3} \& \frac{4 \bullet 4}{4 \bullet 4 \bullet 4 \bullet 4 \bullet 4}=\frac{1}{4^{4^{3}}}$Ex: Simplify 4^{-2}
Ex: Simplify -4^{-2}
Ex: Simplify $(-4)^{-2}$

$$
\text { Ex: Simplify } \frac{1}{4^{-3}}
$$

6.1 Neg. Integer Exponents

 NEGATIVE to POSITIVE EXPONENTS[$\mathrm{a}, \mathrm{b} \neq 0 ; \mathrm{m}, \mathrm{n}$ integers]

$$
\frac{x^{-m}}{y^{-n}}=\frac{y^{n}}{x^{m}}
$$

Ex: Simplify $\underline{4 h^{-5}}$ $m^{-2} k$

$$
\text { Ex: } \frac{5^{-2}}{4^{-3}} \quad \text { Ex: } \frac{x^{-6}}{8 y^{-7}}
$$

6.1 Scientific Notation:application of exponents

Scientific Notation form: $\mathrm{a} \times 1 \mathbf{1 0}^{\mathrm{n}}$
$1 \leq|a|<10 \quad n \in$ Integers
Move Decimal pt. to right of $1^{\text {st }}$ nonzero digit
Count \# of places moved [no move $\boldsymbol{\rightarrow} 10^{0}$]
Large \#s have positive power of 10
Small \#s have negative power of 10
Ex: Write in Sci. notation: . 0571 75,000

Ex: Write w/o exponents: $8.7 \times 10^{5} 4.28 \times 10^{-4}$

6.2 Defining Polynomials

Polynomial Ex: $3 x^{3}+5 x^{2}+2 x^{2}+8 x+1$
Terms \rightarrow separated by + or - signs
Coefficient \rightarrow number (w/ sign) in front of var.
Like Terms \rightarrow same variable to same power
$\underline{\text { Unlike Terms }} \boldsymbol{\rightarrow}$ diff. variable or diff. power

Polynomial $=$ a term or sum of terms where all variables have whole \# exponents

$$
\{0,1,2,3, \ldots\}
$$

6.2 Classifying Polynomials

Polynomial = Monomial or sum of Monomials
Monomial: a number or Product a variable of these cionarind
Names for Special Polynomials:
Monomial(1 term) Ex: $3 y^{2}$ or $2 a b c^{3}$ or -5 Binomial(2 terms) Ex: $3 y^{2}+2 \mathrm{abc}^{3}$ or $-5+x$ Trinomial (3 terms) Ex: $3 y^{2}+2 \mathrm{abc}^{3}-5$
6.2 Classifying Polynomials

State if each of the following is a polynomial. If it is, state if it is a Monomial, Binomial, or Trinomial

3a-7bc
$3 x^{2}+7 x-4$
$7 y^{3}-4 y^{2}+2$
$10 x^{3} y^{2} z$
$8+11 r$
r^{3}

6.2 Classifying Polynomials

Degree of a Monomial = sum of variables of exponents

Degree of a Polynomial = greatest degree

 of any monomial term| Monomial Degree | Polynomial Degree |
| :--- | :--- |

$3 y^{2}$
$2 \mathrm{abc}^{3}$
-14
9xyz
$3 y^{2}+2 a b c^{3}$
$y^{7}+y^{6}+3 x^{4} m^{4}$
$p^{5}+p^{3} m^{3}+4 m$
$x^{2}+x y^{2}+4 a b c$

6.2 Evaluating Polynomial Functions
 Evaluate: $-x^{3}+x-2 x+3$
 for $\mathrm{x}=0 \rightarrow$
 for $\mathrm{x}=1 \rightarrow$
 for $x=-3 \rightarrow$

Evaluate: $c^{2}+4 c+7$
for $\mathrm{c}=-6 \rightarrow$

6.2 Arranging Polynomials.

Polynomials are arranged in powers of one variable: ascending order or descending order
ascending order

descending order

$4+5 a-6 a^{2}+2 a^{3} \quad 2 a^{3}-6 a^{2}+5 a+4$
$-5-2 x+4 x^{2}$

$$
4 x^{2}-2 x-5
$$

When severall variables are in the terms, write in order of only one variable.

6.2 Combine Like Terms

$$
6-a^{5}+2 a^{2} b+3 b-1+3 a^{5}-3 b+a^{2} b
$$

Strike through like terms in the given polynomial as they are combined.

6.3 Adding Polynomials To ADD Polynomials:

- Group LIKE terms together [LIKE terms have same variable to same power ==> can be combined!] OR
- Place in COLUMN form [In DESCENDING order with LIKE terms aligned!]

6.3 Adding Polynomials ADD these Polynomials:

Ex: $(9 y-7 x+15 a)+(-3 y+8 x-8 a)$

Ex: $\left(3 a^{2}+3 a b-b^{2}\right)+\left(4 a b+6 b^{2}\right)$

6.3 Subtracting Polynomials To SUBTRACT Polynomials:

- Find the Additive Inverse (opposite) of polynomial after (-) sign[\bigcirc original signs \& place opposite sign above]

Group LIKE terms together \& Add OR

- Place in COLUMN form [Ooriginal signs \& place opposite sign above] \& Add

6.3 Subtracting Polynomials SUBTRACT these Polynomials:

Ex:(7a-10b) - $(3 a+4 b)$

$$
\text { Ex: }\left(3 y^{2}+7 y+8\right)-\left(2 y^{2}-4 y+3\right)
$$

$$
\text { Ex: }\left(-8 t^{3}+3 t^{2}-7 t-9\right)-\left(-10 t^{3}-5 t^{2}+3 t-11\right)
$$

Mini-Quiz $6.1>6.3$$\quad$ 1) Simplify: $\left(-\frac{2 y^{3} z}{3 z^{2}}\right)^{4}$
2) $3 x y^{3}$ 3) $2 x^{3}+x^{2}+14$) Eval: $-2 x^{2}+3 x-1$ for $x=-2$

5-7) Simplify: 5) $4\left(3 y^{2}-2 y\right)-y(2 y+4)$
6) $\left(3 x^{2}+2 x\right)+\left(5 x^{2}-8 x\right)$
7) $3\left(9 x^{2}+3 x+7\right)-2\left(11 x^{2}-5 x+9\right)$
8) Subtract: $20 x^{3}+12 x$

$$
-\quad 12 x^{3}+7 x^{2}-7 x
$$

9) Copy \& Complete the table: | x | 2 | 1 | 0 | -1 | -2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4^{x} | | | | | |

10a) Write in scientific notation: 728 \& 0.00942
10b) Write in standard notation: 7.53×10^{4}

6.4 Product Rule for Same Base Exponents PROD. OF POWERS
 $a^{m} \cdot a^{n}=a^{m+n}$
 Bases must be the same!
 Simplify each [Multiply coefficents $1^{\text {st }]}$:
 $\left(8 x^{4}\right)(3 x)$
 $\left(2 a^{4}\right)\left(2 a^{3} b^{2}\right)\left(-3 a b^{3}\right)$

6.4
 Product Rule for Exponents

We multiply numbers in scientific notation using the same procedure we used to multiply monomials.

Monomials:

$$
\begin{aligned}
4 a^{3} \quad 2 a^{6} & =4 \cdot 2 a^{3+6} \\
& =8 a^{9}
\end{aligned}
$$

Scientific notation:

$$
\begin{aligned}
4 \times 10^{3} \quad 2 \times 10^{6} & =4 \times 2 \times 10^{3+6} \\
& =8 \times 10^{9}
\end{aligned}
$$

$$
\text { Ex: }\left(4.2 \times 10^{5}\right)\left(2.8 \times 10^{8}\right)
$$

Ans: 1.176×10^{14}

6.4 Power of a power Rule

$\left(\mathbf{a}^{\mathbf{m}}\right)^{\mathbf{n}}=\mathbf{a}^{\mathbf{m n}}$
Ex: $\left(\mathrm{X}^{3}\right)^{4}=\mathrm{x}^{3} \mathrm{x}^{3} \mathrm{x}^{3} \mathrm{x}^{3}=\mathrm{x}^{12}$
Simplify: Ex: $\left(2^{2}\right)^{3}=\ldots \quad$ Ex: $\left(2 \mathrm{a}^{2} \mathrm{~b}^{4}\right)^{5}=$
Ex: $\left(-5 a^{2} b^{6}\right)^{3}=$
Ex: Simplify $\left(-5 m n^{4}\right)\left(-2 m p^{2}\right)^{3}\left(1.5 m^{2} n\right)=$

Ans: $60 \mathrm{~m}^{6} \mathrm{n}^{5} \mathrm{p}^{6}$

6.4 Power Rules for Exponents

POWER OF A PRODUCT

$(\mathbf{a b})^{m}=\mathbf{a}^{\mathrm{m}} \mathbf{b}^{\mathrm{m}}$

Simplify means: No powers of powers, each base only once, \& fractions reduced

$$
\text { Ex: }\left(3 x^{2} y\right)^{3}=\quad \operatorname{Ex}:\left(a^{3}\right)^{3}\left(a^{4}\right)^{2}=
$$

6.4 Using more than 1 rule

Simplify: $\left(6 b^{4} y\right)^{2}\left[(-y)^{2}\right]^{4}$

Simplify: $\left(x^{4} y^{3} z^{6}\right)^{2}\left[\left(2 x^{2} y^{2}\right)^{2}\right]^{4}$

6.5 Multiply Polynomial by Monomial

 Remove parentheses \& Simplify:$$
\text { Ex: } 2\left(a^{2}-3 a\right)+5\left(a^{2}+2 a\right)
$$

Ex: $5 x\left(x^{2}+2 x+1\right)-x(x-3)$

Ex: $-2 a^{2} b \quad 3 a^{3} b+a b^{3}-5 a^{4}+4 b c$

6.5 Multiplying Binomial by Binomial

$(3 a+11)(5 a-2)=$
$(5 y-2 z)(2 y+3 z)=$
$(x+3)(2 x-1)+2 x(x-1)=$

If 2 Binomials use FOIL add outer \& inner terms under = sign

6.5 Multiplying Polynomial by Binomial

 Use 1 of these 3 Methods:1. BOX

2. LONG MULTIPLICATION
3. MULTIPLE DISTRIBUTIVE

6.5 Multiplying Polynomial by Binomial

 Use $1^{\text {st }}$ of these $\mathbf{3}$ Methods:$(2 x+3)\left(x^{2}+3 x+8\right)=$

6.5 Multiplying Polynomial by Binomial Use $2^{\text {nd }}$ of these 3 Methods:

 2. LONG MULTIPLICATION $(2 x+3)\left(x^{2}+3 x+8\right)=$
6.5 Multiplying Polynomial by Binomial

 Use $3^{\text {rd }}$ of these 3 Methods:
3. MULTIPLE DISTRIBUTIVE

$(2 x+3)\left(x^{2}+3 x+8\right)=$

6.5 Multiplying Polynomial by Binomial

 Solve using your favorite Method:(1.) box (2. LONG MUlt. 3. MULTIPLE DISTRIB.
$(2 x-1)\left(x^{2}-4 x+3\right)=$

6.5 Multiplying Conjugates EASY! $\mathbf{b})(\mathbf{a}-\mathbf{b})=\mathbf{a}^{2}-\mathbf{b}^{2} \quad\left[\begin{array}{l}\text { Same } \\ \text { binomials with }\end{array}\right.$
 $(x-3)(x+3)=$

$(x-2 y)(x+2 y)=$
$(6 x-20 y)(6 x+20 y)=$

6.5 Special Binomial Products

Exs. using SQUARE OF SUM:
$(a+b)^{2}=\mathbf{a}^{2}+2 \mathbf{a b}+\mathbf{b}^{2}$
Sq. $1^{\text {st }}$ term; twice prod. of 2 terms; sq. last term
$(x+5)^{2}=$
$(3 a+2)^{2}=$
$(5 b+7 c)^{2}=$

6.5 Special Binomial Products

SQUARE OF DIFFERENCE:
 $(\mathbf{a}-\mathbf{b})^{\mathbf{2}}=(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{b})=\mathbf{a}^{\mathbf{2}} \mathbf{- 2 a b}+\mathbf{b}^{\mathbf{2}}$

Sq. $1^{\text {st }}$ term; twice prod. of 2 terms; sq. last term
$(x-3)^{2}=$
$(4 a-2)^{2}=$
$\left(6 x^{2}-10 y\right)^{2}=$

6.6 Quotient Rule for Exponents

Develop a pattern: $\frac{2^{4}}{2^{1}}=$ $\frac{2^{5}}{2^{3}}=$
QUOTIENT OF POWERS $[a \neq 0]$

$$
\frac{a^{m}}{a^{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}
$$

6.6 Dividing By Monomials Exs. of QUOTIENT OF POWERS:

$$
\frac{18 x^{3} y^{6} z^{2}}{24 x^{4} y^{3}}=\quad=\frac{3 y^{3} z^{2}}{4 x}
$$

$$
\frac{2.34 \times 10^{7}}{3.6 \times 10^{3}}=
$$

$$
=6.5 \times 10^{3}
$$

$$
\left(\frac{x^{-7}}{x^{3}}\right)^{3}
$$

$$
=\frac{1}{x^{30}}
$$

Exponents Summary

Assume that no denominators are 0 , that a and b are real numbers, and that m and n are integers.
$\begin{array}{ll}\text { Zero as an exponent: } & a^{0}=1, \text { where } a_{\neq 0} . \\ & 0^{0} \text { is indeterminate. }\end{array}$
Negative exponents: $a^{-n}=\frac{1}{a^{n}},{\frac{1}{a^{-n}}}^{a^{n}} a^{n} \frac{a}{b}^{-n}=\frac{b}{a}^{n}$
Product rule for exponents: $a^{m} \cdot a^{n}=a^{m+n}$
Quotient rule for exponents: $a^{m} \div a^{n}=a^{m-n}$
Raising a power to a power: $a^{m^{n}}=a^{m n}$
Raising a product to a power: $a b^{n}=a^{n} b^{n}$
Raising a quotient to a power: $\frac{a}{b}^{n}=\frac{a^{n}}{b^{n}}$

6.6 Division of Polynomials

\div Polynomial by Monomial: \div each term of poly. by mono. $\begin{aligned} & \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \\ & \mathrm{c} \neq 0\end{aligned}$
\div Ex: Divide $12 m^{6}+18 m^{5}+30 m^{4}$ by $6 \mathrm{~m}^{2}$

Note: Omit Objective 5
pages 454 -
457=>Dividing
by a Binomial

Ans: $2 m^{4}+3 m^{3}+5 m^{2}$

6.6 Division of Polynomials

Ex:

$$
\frac{36 x^{6} y^{2}-9 x^{3} y-6 x}{3 x^{2} y}
$$

$$
=12 x^{4} y-3 x-\frac{2}{x y}
$$

Mini-Quiz $6.4 \rightarrow 6.6+$ Review $1-5$ Multiply

1) $\left(3 x^{3} y^{4}\right)\left(-4 x^{5} y\right) \quad$ 2) $-5 x^{3}\left(4 x^{2}+3 x-6\right)$
2) $(3 a-4)(5 a+2)$

$$
\text { 4) }(5 y-3)^{2} \quad \text { 5) }(2 x-1)\left(5 x^{2}+4 x-3\right)
$$

6-9 Simplify: 6) $p^{12} p^{4} \quad$ 7) $(2 w)^{4}-\left(3 w^{2}\right)^{2}$
8)

$$
\frac{4^{52}}{a^{6} \cdot a^{-3}}
$$

9) $\frac{z^{-3}}{y^{5} z^{2-1}}$
10) $\frac{24 w^{5}-12 w^{2}}{4 w^{2}}$
