| Name | | | | | | |---|---|---|--|----------|----| | SHORT ANSW | ER. Write the word o | r phrase that best completes each | statement or answers the ques | stion. | | | Provide an appropriate response. 1) The mean IQ of statistics teachers is greater than 120. Write the null and alternative hypotheses. | | | | | | | | 2) The dean of a major university claims that the mean time for students to earn a Master's degree is at most 3.5 years. Write the null and alternative hypotheses. | | | | | | game. | 3) The mean score for all NBA games during a particular season was less than 109 points per game. State this claim mathematically. Write the null and alternative hypotheses. Identify which hypothesis is the claim. | | | | | | MULTIPLE CH | OICE. Choose the on | e alternative that best completes | the statement or answers the q | uestion. | | | or two | o-tailed. | > 25, determine whether the hypo | | ailed, | 4) | | A) 1 | right-tailed | B) two-tailed | C) left-tailed | | | | this cl | | % of voters favor gun control. Dete
t-tailed, or two-tailed.
B) right-tailed | ermine whether the hypothesis C) two-tailed | test for | 5) | | SHORT ANSW | ER. Write the word o | r phrase that best completes each | statement or answers the que | stion. | | | , | 6) The mean IQ of statistics teachers is greater than 120. Identify the type I and type II errors for the hypothesis test of this claim. | | | | | | | | games during a particular season
d type II errors for the hypothesis | | 7) | | | rando | m sample of 60 custor | nt the mean waiting time in line is
mers has a mean of 4.8 minutes wi
fast food outlet's claim. | less than 4.9 minutes. A
th a standard deviation of 0.6 | 8) | | | MULTIPLE CH | OICE. Choose the on | e alternative that best completes | the statement or answers the q | uestion. | | | signif
A)
B)
C) | icance of $\alpha = 0.1$, when
Reject H ₀ if the standa
Reject H ₀ if the standa
Reject H ₀ if the standa | the claim that $\mu > 25.6$. Given a same as a should you reject H_0 ? ardized test statistic is greater than | 2.575.
1.645.
1.96. | | 9) | | SHORT ANSWER. Write the word or phrase that best completes each statement or answers the que | stion. | |---|----------| | 10) A local brewery distributes beer in bottles labeled 32 ounces. A government agency thinks that the brewery is cheating its customers. The agency selects 50 of these bottles, measures their contents, and obtains a sample mean of 31.6 ounces with a standard deviation of 0.70 ounce. Use a 0.01 significance level to test the agency's claim that the brewery is cheating its customers. | 10) | | 11) A local group claims that the police issue at least 60 speeding tickets a day in their area. To prove their point, they randomly select one month. Their research yields the number of tickets issued for each day. The data are listed below. At $\alpha = 0.01$, test the group's claim. | 11) | | 70 48 41 68 69 55 70 57 60 83
32 60 72 58 88 48 59 60 56 65
66 60 68 42 57 59 49 70 75 63
44 | | | MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the c | uestion. | | 12) Find the critical values for a sample with n = 10 and α = 0.05 if H ₀ : μ \geq 20. | 12) | | A) -1.383 B) -2.262 C) -1.833 D) -3.250 | | | SHORT ANSWER. Write the word or phrase that best completes each statement or answers the que | stion. | | 13) A local brewery distributes beer in bottles labeled 12 ounces. A government agency thinks that the brewery is cheating its customers. The agency selects 20 of these bottles, measures their contents, and obtains a sample mean of 11.7 ounces with a standard deviation of 0.7 ounce. Use a 0.01 significance level to test the agency's claim that the brewery is cheating its customers. | 13) | | 14) A local group claims that the police issue more than 60 speeding tickets a day in their area. To prove their point, they randomly select two weeks. Their research yields the number of tickets issued for each day. The data are listed below. At $\alpha = 0.01$, test the group's claim. | 14) | | 70 48 41 68 69 55 70
57 60 83 32 60 72 58 | | | 15) A telephone company claims that 20% of its customers have at least two telephone lines. The company selects a random sample of 500 customers and finds that 88 have two or more telephone lines. At α = 0.05, does the data support the claim? Use a P-value. | 15) | | 16) A telephone company claims that 20% of its customers have at least two telephone lines. The company selects a random sample of 500 customers and finds that 88 have two or more telephone lines. If $\alpha = 0.05$, test the company's claim using confidence intervals. | 16) | ## Answer Key Testname: 2023 WS8 - 1) H_0 : $\mu \le 120$, H_a : $\mu > 120$ - 2) H_0 : $\mu \le 3.5$, H_a : $\mu > 3.5$ - 3) claim: $\mu < 109$; H_0 : $\mu \ge 109$, H_a : $\mu < 109$; claim is H_a - 4) A - 5) C - 6) type I: rejecting H₀: $\mu \le 120$ when $\mu \le 120$ type II: failing to reject H₀: $\mu \le 120$ when $\mu > 120$ - 7) type I: rejecting H₀: $\mu \ge 100$ when $\mu \ge 100$ type II: failing to reject H₀: $\mu \ge 100$ when $\mu < 100$ - 8) Fail to reject H₀; There is not enough evidence to support the fast food outlet's claim that the mean waiting time is less than 4.9 minutes. - 9) D - 10) standardized test statistic \approx -4.04; critical value $z_0 =$ -2.33; reject H₀; The data support the agency's claim. - 11) $\bar{x} = 60.4$, s = 12.2, standardized test statistic ≈ 0.18 ; critical value $z_0 = 2.33$; fail to reject H₀; There is not sufficient evidence to reject the claim. - 12) C - 13) critical value $t_0 = -2.539$; standardized test statistic ≈ -1.917 ; fail to reject H₀; There is not sufficient evidence to support the government agency's claim. - 14) $\bar{x} = 60.21$, s = 13.43; critical value $t_0 = 2.650$; standardized test statistic ≈ 0.060 ; fail to reject H₀; There is not sufficient evidence to support the claim. - 15) $\alpha = 0.05$; P-value = 0.0901; P > α ; fail to reject H₀; There is not sufficient evidence to reject the telephone company's claim. - 16) Confidence interval (0.143, 0.209); 20% lies in the interval, fail to reject H₀; There is not sufficient evidence to reject the company's claim.