## Completing the Square

To complete the square for the expression $x^{2}+b x$, add $\left(\frac{b}{2}\right)^{2}$, which is the square of half the coefficient of $x$. Consequently,

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

When solving quadratic equations by completing the square, you must add $\left(\frac{b}{2}\right)^{2}$ to both sides to maintain equality.

## Completing the Square: Leading Coefficient is 1

Let's solve the equation $x^{2}-6 x+2=0$ by completing the square.

$$
\begin{array}{ll}
x^{2}+6 x+2=0 & \text { Original Equation } \\
\begin{array}{ll}
x^{2}+6 x=-2 & \text { Subtract } 2 \text { from both sides } \\
x^{2}+6 x+(3)^{2}=-2+(3)^{2} \\
\downarrow \\
(b / 2)^{2}
\end{array} & \text { Divide the } 6 \text { by 2, square it, and then add to both sides } \\
x^{2}+6 x+9=7 & \\
(x+3)^{2}=7 & \text { Simplify } \\
x+3= \pm \sqrt{7} & \text { Perfect square trinomial } \\
x=-3 \pm \sqrt{7} & \text { Extract square roots } \\
x & \text { Solutions }
\end{array}
$$

## Completing the Square: Leading Coefficient is Not 1

Let's solve the equation $3 x^{2}-4 x-5=0$ by completing the square.
If the leading coefficient of a quadratic equation is not 1 , you should divide both sides of the equation by this coefficient before completing the square.
$3 x^{2}-4 x-5=0$
Original equation
$3 x^{2}-4 x=5$
Add 5 to both sides
$x^{2}-\frac{4}{3} x=\frac{5}{3} \quad$ Divide both sides by 3
$x^{2}-\frac{4}{3} x+\left(-\frac{2}{3}\right)^{2}=\frac{5}{3}+\left(-\frac{2}{3}\right)^{2} \quad$ Divide $-\frac{4}{3}$ by 2, square it, and then add to both sides
$\downarrow \quad \nearrow$
$(b / 2)^{2}$
$\left(x-\frac{2}{3}\right)^{2}=\frac{19}{9}$
Perfect square trinomial
$x-\frac{2}{3}= \pm \frac{\sqrt{19}}{3}$
Extract square roots
$x=\frac{2}{3} \pm \frac{\sqrt{19}}{3}$

## Solutions

Using a graphing calculator, you can see that the two solutions are approximately 2.11963 and -0.78630 , which agree with the two graphical solutions shown below.


## Completing the Square: One Term is Not Present

Let's solve the equation $4 x^{2}-7 x=0$ by completing the square.
As you can see, we have no constant but we will treat the problem the same as if there was a constant present. We skip the step of moving the constant over to the other side of the equation and continue on from there.
$4 x^{2}-7 x=0$
Original equation
$x^{2}-\frac{7}{4} x=0$
Divide both sides by 4
$x^{2}-\frac{7}{4} x+\left(-\frac{7}{8}\right)^{2}=0+\left(-\frac{7}{8}\right)^{2} \quad$ Divide $-\frac{7}{4}$ by 2 , square it, and then add to both sides $\downarrow \quad \nearrow$
$(b / 2)^{2}$
$\left(x-\frac{7}{8}\right)^{2}=\frac{49}{64}$
Perfect square trinomial
$x-\frac{7}{8}= \pm \frac{7}{8}$
Extract square roots
$x=\frac{7}{8} \pm \frac{7}{8} \quad$ or $\quad x=0, \frac{7}{4} \quad$ Solutions

