Exponent Properties

1. Product of like bases:

$$
a^{m} a^{n}=a^{m+n}
$$

To multiply powers with the same base, add the exponents and keep the common base.

$$
\text { Example: } x^{5} x^{3}=x^{5+3}=x^{8}
$$

2. Quotient of like bases: $\quad \frac{a^{m}}{a^{n}}=a^{m-n}$

To divide powers with the same base, subtract the exponents and keep the common base.

$$
\text { Example: } \frac{x^{5}}{x^{3}}=x^{5-3}=x^{2}
$$

3. Power to a power:
 $$
\left(a^{m}\right)^{n}=a^{m n}
$$

To raise a power to a power, keep the base and multiply the exponents.

$$
\text { Example: }\left(x^{5}\right)^{3}=x^{5^{* 3}}=x^{15}
$$

4. Product to a power:

$$
(a b)^{m}=a^{m} b^{m}
$$

To raise a product to a power, raise each factor to the power.

$$
\text { Example: }\left(x^{4} y^{5}\right)^{3}=x^{12} y^{15}
$$

5. Quotient to a power

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

To raise a quotient to a power, raise the numerator and the denominator to the power.
Example: $\left(\frac{x^{3}}{y^{2}}\right)^{4}=\frac{x^{12}}{y^{8}}$

6. Zero Exponent:
 $$
a^{0}=1
$$

Any number raised to the zero power is equal to " 1 ".
Example: $\left(8 x^{4}\right)^{0}=1$

7. Negative exponent:
 $$
a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n}
$$

Negative exponents indicate reciprocation, with the exponent of the reciprocal becoming positive. You may want to think of it this way: unhappy (negative) exponents will become happy (positive) by having the base/exponent pair "switch floors"!

$$
\text { Example: } 8^{-2}=\frac{1}{8^{2}}=\frac{1}{64}
$$

or

$$
\frac{4}{x^{-3}}=4 x^{3}
$$

Common Algebraic Errors

Error
Reason/Correct/Justification/Example

$\frac{2}{0} \neq 0 \text { and } \frac{2}{0} \neq 2$	Division by zero is undefined!
$-3^{2} \neq 9$	$-3^{2}=-9,(-3)^{2}=9$ Watch parenthesis!
$\left(x^{2}\right)^{3} \neq x^{5}$	$\left(x^{2}\right)^{3}=x^{2} x^{2} x^{2}=x^{6}$
$\frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c}$	$\frac{1}{2}=\frac{1}{1+1} \neq \frac{1}{1}+\frac{1}{1}=2$
$\frac{1}{x^{2}+x^{3}} \neq x^{-2}+x^{-3}$	A more complex version of the previous error.
$\frac{\not a+b x}{\not a} \neq 1+b x$	$\frac{a+b x}{a}=\frac{a}{a}+\frac{b x}{a}=1+\frac{b x}{a}$ Beware of incorrect canceling!
$-a(x-1) \neq-a x-a$	$-a(x-1)=-a x+a$ Make sure you distribute the "-"!
$(x+a)^{2} \neq x^{2}+a^{2}$	$(x+a)^{2}=(x+a)(x+a)=x^{2}+2 a x+a^{2}$
$\sqrt{x^{2}+a^{2}} \neq x+a$	$5=\sqrt{25}=\sqrt{3^{2}+4^{2}} \neq \sqrt{3^{2}}+\sqrt{4^{2}}=3+4=7$
$\sqrt{x+a} \neq \sqrt{x}+\sqrt{a}$	See previous error.
$(x+a)^{n} \neq x^{n}+a^{n}$ and $\sqrt[n]{x+a} \neq \sqrt[n]{x}+\sqrt[n]{a}$	More general versions of previous three errors.
$2(x+1)^{2} \neq(2 x+2)^{2}$	$\begin{aligned} & 2(x+1)^{2}=2\left(x^{2}+2 x+1\right)=2 x^{2}+4 x+2 \\ & (2 x+2)^{2}=4 x^{2}+8 x+4 \end{aligned}$

Square first then distribute!
See the previous example. You can not
$(2 x+2)^{2} \neq 2(x+1)^{2}$ factor out a constant if there is a power on the parethesis!

$$
\sqrt{-x^{2}+a^{2}}=\left(-x^{2}+a^{2}\right)^{\frac{1}{2}}
$$

Now see the previous error.
$\frac{a}{\left(\frac{b}{c}\right)} \neq \frac{a b}{c} \quad \frac{a}{\left(\frac{b}{c}\right)}=\frac{\left(\frac{a}{1}\right)}{\left(\frac{b}{c}\right)}=\left(\frac{a}{1}\right)\left(\frac{c}{b}\right)=\frac{a c}{b}$
$\frac{\left(\frac{a}{b}\right)}{c} \neq \frac{a c}{b} \quad \frac{\left(\frac{a}{b}\right)}{c}=\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{1}\right)}=\left(\frac{a}{b}\right)\left(\frac{1}{c}\right)=\frac{a}{b c}$

