Exponent Properties

1. Product of like bases:

To multiply powers with the same base, add the exponents and keep the common base. *Example:* $x^5x^3 = x^{5+3} = x^8$

2. Quotient of like bases: $\frac{a^m}{a^n} = a^{m-n}$

To divide powers with the same base, subtract the exponents and keep the common base.

Example:
$$\frac{x^5}{x^3} = x^{5-3} = x^2$$

3. Power to a power:

To raise a power to a power, keep the base and multiply the exponents.

Example:
$$(x^5)^3 = x^{5*3} = x^{15}$$

4. Product to a power:

To raise a product to a power, raise each factor to the power.

Example: $(x^4y^5)^3 = x^{12}y^{15}$

5. Quotient to a power

To raise a quotient to a power, raise the numerator and the denominator to the power.
Example:
$$\left(\frac{x^3}{y^2}\right)^4 = \frac{x^{12}}{y^8}$$

 $a^0 = 1$

 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Any number raised to the zero power is equal to "1". *Example:* $(8x^4)^0 = 1$

7. Negative exponent:

$$a^{-n} = \frac{1}{a^n}$$
 or $\frac{1}{a^{-n}} = a^n$

Negative exponents indicate reciprocation, with the exponent of the reciprocal becoming positive. You may want to think of it this way: unhappy (negative) exponents will become happy (positive) by having the base/exponent pair "switch floors"!

Example:
$$8^{-2} = \frac{1}{8^2} = \frac{1}{64}$$
 or $\frac{4}{x^{-3}} = 4x^3$

$$a^m a^n = a^{m+n}$$

 $(ab)^m = a^m b^m$

 $(a^m)^n = a^{mn}$

Error	Reason/Correct/Justification/Example
$\frac{2}{0} \neq 0$ and $\frac{2}{0} \neq 2$	Division by zero is undefined!
$-3^2 \neq 9$	$-3^2 = -9$, $(-3)^2 = 9$ Watch parenthesis!
$\left(x^2\right)^3 \neq x^5$	$\left(x^{2}\right)^{3} = x^{2}x^{2}x^{2} = x^{6}$
$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$	$\frac{1}{2} = \frac{1}{1+1} \neq \frac{1}{1} + \frac{1}{1} = 2$
$\frac{1}{x^2 + x^3} \neq x^{-2} + x^{-3}$	A more complex version of the previous error.
$\frac{\cancel{a} + bx}{\cancel{a}} \neq 1 + bx$	$\frac{a+bx}{a} = \frac{a}{a} + \frac{bx}{a} = 1 + \frac{bx}{a}$ Beware of incorrect canceling!
$-a(x-1) \neq -ax-a$	-a(x-1) = -ax + a Make sure you distribute the "-"!
$\left(x+a\right)^2 \neq x^2 + a^2$	$(x+a)^{2} = (x+a)(x+a) = x^{2} + 2ax + a^{2}$
$\sqrt{x^2 + a^2} \neq x + a$	$5 = \sqrt{25} = \sqrt{3^2 + 4^2} \neq \sqrt{3^2} + \sqrt{4^2} = 3 + 4 = 7$
$\sqrt{x+a} \neq \sqrt{x} + \sqrt{a}$	See previous error.
$(x+a)^n \neq x^n + a^n \text{ and } \sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}$	More general versions of previous three errors.
$2(x+1)^2 \neq (2x+2)^2$	$2(x+1)^{2} = 2(x^{2}+2x+1) = 2x^{2}+4x+2$ (2x+2) ² = 4x ² +8x+4 Square first then distribute!
$\left(2x+2\right)^2 \neq 2\left(x+1\right)^2$	See the previous example. You can not factor out a constant if there is a power on the parethesis!
$\sqrt{-x^2 + a^2} \neq -\sqrt{x^2 + a^2}$	$\sqrt{-x^2 + a^2} = (-x^2 + a^2)^{\frac{1}{2}}$ Now see the previous error.
$\frac{a}{\left(\frac{b}{c}\right)} \neq \frac{ab}{c}$	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{\left(\frac{a}{1}\right)}{\left(\frac{b}{c}\right)} = \left(\frac{a}{1}\right)\left(\frac{c}{b}\right) = \frac{ac}{b}$
$\frac{\left(\frac{a}{b}\right)}{c} \neq \frac{ac}{b}$	$\frac{\left(\frac{a}{b}\right)}{c} = \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{1}\right)} = \left(\frac{a}{b}\right)\left(\frac{1}{c}\right) = \frac{a}{bc}$

Common Algebraic Errors