Operations With Signed Numbers

ADDITION - SUM $a+b$

$\begin{aligned} & 5+3=8 \\ & (-5)+(-3)=-8 \end{aligned}$	Add in Absolute Value, Keep the Sign
$7+(-4)=3$	Subtract in Absolute Value,
$(-7)+4=-3$	Use the Sign of the Number that is Larger in Absolute Value

SUBTRACTION - DIFFERENCE a - b
$8-2=6$

$$
\begin{aligned}
& \left.\begin{array}{l}
5-7=5+(-7)=-2 \\
-6-3=-6+(-3)=-9
\end{array}\right\} \quad \text { Subtracting a number is the same as Adding its Opposite. } \\
& \left.\begin{array}{l}
6-(-2)=6+2=8 \\
-8-(-6)=-8+6=-2
\end{array}\right\} \quad \text { Change the two '--' signs to an addition sign. i.e. ' }--^{\prime} \rightarrow+
\end{aligned}
$$

MULTIPLICATION - PRODUCT $a \times b, a \cdot b, a b, a * b, a(b),(a)(b),(a) b$
$\left.\begin{array}{l}(+)(+)=+ \\ (-)(-)=+\end{array}\right\} \quad$ If the Signs are the SAME, then their product is POSITIVE
$\left.\begin{array}{l}(+)(-)=- \\ (-)(+)=-\end{array}\right\} \quad$ If the Signs are OPPOSITES, then their product is NEGATIVE
$(-1)(-2)(-3)(-4)=24$ If you have an EVEN number of ' - ' signs, then their product is POSITIVE
$(-1)(-2)(-3)(4)=-24 \quad$ If you have an ODD number of ' - ' signs, then their product is NEGATIVE
DIVISION - QUOTIENT $\mathrm{a} \div \mathrm{b}, \mathrm{a} / \mathrm{b}, \frac{\mathrm{a}}{\mathrm{b}}, \mathrm{b} \sqrt{\mathrm{a}}$
$\frac{+}{+}=+$ or $\frac{-}{-}=+\quad$ If the Signs are the SAME, then their quotient is POSITIVE
$\frac{+}{-}=-$ or $\frac{-}{+}=-\quad$ If the Signs are OPPOSITES, their quotient is NEGATIVE
$\frac{0}{2}=0 \quad$ Zero in the NUMERATOR, the fractional value is ZERO
$\frac{2}{0}$ is Undefined Zero in the DENOMINATOR, the expression is UNDEFINED
$\frac{-1}{2}=\frac{1}{-2}=-\frac{1}{2} \quad$ If ONLY ONE of the numbers is NEGATIVE, their quotient is NEGATIVE

The Number System

Irrational Numbers

ex) $\sqrt{2}, \sqrt{3}, \pi$, e
Non-Terminating Decimal Number and
Non-Repeating Decimal Number

Rational Numbers

ex) $5, \frac{3}{4}, \frac{1}{3}, 0.21,5 . \overline{6}$
Terminating Decimal Number
or
Repeating Decimal Number

Integers
$\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

Whole Numbers
$\{0,1,2,3,4, \ldots\}$

Counting Numbers
or
Natural Numbers
$\{1,2,3,4, \ldots\}$

