
9. Find the slope of the treadmill.

150 yd

10. Find the average slope of the hill.

500 yd

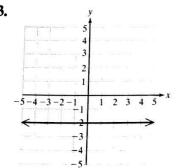
- 11. The road sign shown in the figure indicates the percent grade of a hill. This gives the slope of the road as the change in elevation per 100 horizontal ft. Given a 4% grade, write this as a slope in fractional form.
- 12. If a plane gains 1000 ft in altitude over a distance of 12,000 horizontal ft, what is the slope? Explain what this value means in the context of the problem.

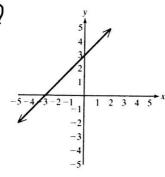
Concept 2: The Slope Formula

For Exercises 13-30, use the slope formula to determine the slope of the line containing the two points. (See Examples 2-5.)

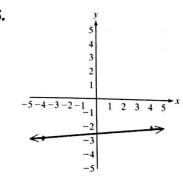
- **13.** (6,0) and (0,-3)
- **14.** (-5,0) and (0,4)
- **15.** (-2,3) and (4,-7)

- **16.** (-5, -4) and (1, -7)
- **17.** (-2, 5) and (2, -3)
- **18** (4, -2) and (6, -8)

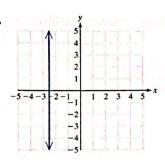

- **19.** (0.3, -1.1) and (-0.1, -0.8)
- **20.** (0.4, -0.2) and (0.3, -0.1)
- **21.** (2, 3) and (2, 7)

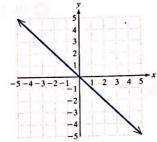

- **22.** (-1,5) and (-1,0)
- **23.** (5, -1) and (-3, -1)
- **24.** (-8, 4) and (1, 4)

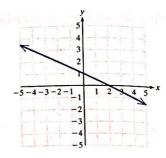
- **25.** (-4.6, 4.1) and (0, 6.4)
- **26.** (1.1, 4) and (-3.2, -0.3)
- **27.** $\left(\frac{3}{2}, \frac{4}{3}\right)$ and $\left(\frac{7}{2}, 1\right)$
- **28.** $\left(\frac{2}{3}, -\frac{1}{2}\right)$ and $\left(-\frac{1}{6}, -\frac{3}{2}\right)$ **29.** $\left(\frac{3}{4}, \frac{7}{3}\right)$ and $\left(\frac{1}{2}, 2\frac{1}{3}\right)$
- **30.** $\left(\frac{9}{4}, \frac{2}{5}\right)$ and $\left(2\frac{1}{4}, \frac{1}{10}\right)$
- 31. Explain how to use the graph of a line to determine whether the slope of a line is positive, negative, zero, or undefined.
- 32. If the slope of a line is $\frac{4}{3}$, how many units of change in y will be produced by 6 units of change in x?


For Exercises 33–38, estimate the slope of the line from its graph.

33.




35.


36.

37.

38.

Concept 3: Parallel and Perpendicular Lines

For Exercises 39-44, the slope of a line is given.

- a. Find the slope of a line parallel to the given line.
- b. Find the slope of a line perpendicular to the given line. (See Example 6.)

39.
$$m = 5$$

$$3$$
 40. $m = 3$

41.
$$m = -\frac{4}{7}$$

42.
$$m = -\frac{2}{11}$$

43.
$$m = 0$$

- 45. Can the slopes of two perpendicular lines both be positive? Explain your answer.
- 46. Suppose a line is defined by the equation x = 2. What is the slope of a line perpendicular to this line?
- 47. Suppose a line is defined by the equation y = -5. What is the slope of a line perpendicular to this line?
- **48.** Suppose a line is defined by the equation x = -3. What is the slope of a line parallel to this line?
- 49. What is the slope of a line parallel to the x-axis?
- **50.** What is the slope of a line perpendicular to the y-axis?
- 51. What is the slope of a line perpendicular to the x-axis?
- 52. What is the slope of a line parallel to the y-axis?

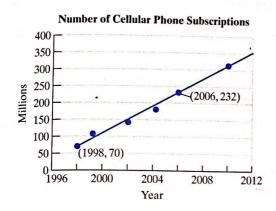
In Exercises 53-60, two points are given from each of two lines L_1 and L_2 . Without graphing the points, determine if the lines are parallel, perpendicular, or neither. (See Example 7.)

53.
$$L_1$$
: (2, 5) and (4, 9) L_2 : (-1, 4) and (3, 2)

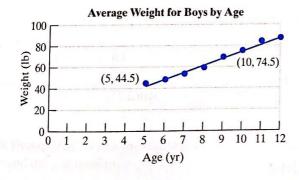
54.
$$L_1$$
: $(-3, -5)$ and $(-1, 2)$
 L_2 : $(0, 4)$ and $(7, 2)$

55.
$$L_1$$
: (4, -2) and (3, -1) L_2 : (-5, -1) and (-10, -16)

56.
$$L_1$$
: (0, 0) and (2, 3) L_2 : (-2, 5) and (0, -2)

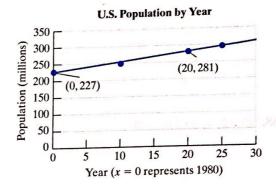

58.
$$L_1$$
: (3, 5) and (2, 5) L_2 : (2, 4) and (0, 4)

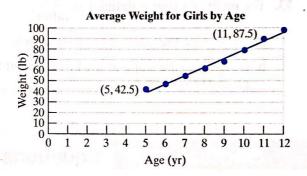
59.
$$L_1$$
: $(-3, -2)$ and $(2, 3)$ L_2 : $(-4, 1)$ and $(0, 5)$


60.
$$L_1$$
: (7, 1) and (0, 0) L_2 : (-10, -8) and (4, -6)

Concept 4: Applications and Interpretation of Slope

- 61. The graph shows the number of cellular phone subscriptions (in millions) purchased in the United States for selected years. (See Example 8.)
 - a. Use the coordinates of the given points to find the slope of the line, and express the answer in decimal form.
 - **b.** Interpret the meaning of the slope in the context of this problem.


- 63. The data in the graph show the average weight for boys based on age.
 - **a.** Use the coordinates of the given points to find the slope of the line.
 - **b.** Interpret the meaning of the slope in the context of this problem.



The U.S. population (in millions) has grown approximately linearly since 1980.

- a. Find the slope of the line defined by the two given points.
- b. Interpret the meaning of the slope in the context of this problem.

- 64. The data in the graph show the average weight for girls based on age.
 - a. Use the coordinates of the given points to find the slope of the line, and write the answer in decimal form.
 - **b.** Interpret the meaning of the slope in the context of this problem.

