Example 12 Translating and Solving a Compound Inequality

The sum of a number and 4 is between -5 and 12. Find all such numbers.

Solution:

Let x represent a number.

$$-5 < x + 4 < 12$$

 $5 - 4 < x + 4 - 4 < 12 - 4$

Translate the inequality.

$$-5 - 4 < x + 4 - 4 < 12 - 4$$

Subtract 4 from all three parts of the inequality.

$$-9 < x < 8$$

The number may be any real number between -9 and 8: $\{x \mid -9 < x < 8\}$.

Skill Practice

17. The sum of twice a number and 11 is between 21 and 31. Find all such numbers.

Answer

17. Any real number between 5 and 10: $\{n \mid 5 < n < 10\}$

Section 1.5

Practice Exercises

Boost your GRADE at ALEKS.com!

- Practice Problems
 - · e-Professors Videos
- Self-Tests NetTutor

Study Skills Exercises

- 1. Which activities might you try when working in a study group to help you learn and understand the material? Quiz one another by asking one another questions.
 - Practice teaching one another.
 - Share and compare class notes.
 - Support and encourage one another.
 - Work together on exercises and sample problems.
- 2. Define the key terms.
 - a. Compound inequality
- b. Intersection
- c. Union

Review Exercises

For Exercises 3–6, solve the linear inequality. Write the solution in interval notation.

3.
$$-6u + 8 > 2$$

4.
$$2 - 3z \ge -4$$

5.
$$-12 \le \frac{3}{4}p$$

6.
$$5 > \frac{1}{3}w$$

Concept 1: Union and Intersection of Sets

7. Given: $M = \{-3, -1, 1, 3, 5\}$ and $N = \{-4, -3, -2, -1, 0\}$. (See Example 1.)

List the elements of the following sets:

a.
$$M \cap N$$

b.
$$M \cup N$$

Solution: $P = \{a, b, c, d, e, f, g, h, i\}$ and $Q = \{a, e, i, o, u\}$.

List the elements of the following sets.

a.
$$P \cap Q$$

b.
$$P \cup Q$$

For Exercises 9–20, refer to the sets A, B, C, and D. Determine the union or intersection as indicated. Express the answer in interval notation, if possible. (See Example 2.)

$$A = \{x | x < -4\}, B = \{x | x > 2\}, C = \{x | x \ge -7\}, D = \{x | 0 \le x < 5\}$$

9. $A \cap C$

10. $B \cap C$

11. $A \cup B$

12. $A \cup D$

13. $A \cap B$

14. $A \cap D$

15. $B \cup C$

16. $B \cup D$

17. $C \cap D$

18. $B \cap D$

19. $C \cup D$

20. $A \cup C$

For Exercises 21–26, find the intersection and union of sets as indicated. Write the answers in interval notation. (See Example 3.)

21. a.
$$(-2,5)$$
 ∩ $[-1, ∞)$

22. a.
$$(-\infty, 4) \cap [-1, 5)$$

23. a.
$$\left(-\frac{5}{2}, 3\right) \cap \left(-1, \frac{9}{2}\right)$$

b.
$$(-2,5) \cup [-1,\infty)$$

b.
$$(-\infty, 4) \cup [-1, 5)$$

$$\mathbf{b.} \left(-\frac{5}{2}, 3 \right) \cup \left(-1, \frac{9}{2} \right)$$

24. a.
$$(-3.4, 1.6) \cap (-2.2, 4.1)$$

25. a.
$$(-4, 5] \cap (0, 2]$$

26. a.
$$[-1, 5) \cap (0, 3)$$

b.
$$(-3.4, 1.6) \cup (-2.2, 4.1)$$

b.
$$(-4, 5] \cup (0, 2]$$

b.
$$[-1, 5) \cup (0, 3)$$

Concept 2: Solving Compound Inequalities: And

For Exercises 27-36, solve the inequality and graph the solution. Write the answer in interval notation. (See Examples 4-6.)

27.
$$y - 7 \ge -9$$
 and $y + 2 \le 5$

28.
$$a + 6 > -2$$
 and $5a < 30$

29.
$$2t + 7 < 19$$
 and $5t + 13 > 28$

30.
$$5p + 2p \ge -21$$
 and $-9p + 3p \ge -24$

31.
$$2.1k - 1.1 \le 0.6k + 1.9$$
 and $0.3k - 1.1 < -0.1k + 0.9$

32.
$$0.6w + 0.1 > 0.3w - 1.1$$
 and $2.3w + 1.5 \ge 0.3w + 6.5$

33.
$$\frac{2}{3}(2p-1) \ge 10$$
 and $\frac{4}{5}(3p+4) \ge 20$

$$(34.)\frac{5}{2}(a+2) < -6 \quad \text{and} \quad \frac{3}{4}(a-2) < 1$$

35.
$$-2 < -x - 12$$
 and $-14 < 5(x - 3) + 6x$

36.
$$-8 \ge -3y - 2$$
 and $3(y - 7) + 16 > 4y$

Concept 3: Solving Inequalities of the Form a < x < b

- 37. Write $-4 \le t < \frac{3}{4}$ as two separate inequalities.
- 38. Write $-2.8 < y \le 15$ as two separate inequalities.
- **39.** Explain why 6 < x < 2 has no solution.
- **40.** Explain why 4 < t < 1 has no solution.
- **41.** Explain why -5 > y > -2 has no solution.
- **42.** Explain why -3 > w > -1 has no solution.

For Exercises 43–54, solve the inequality and graph the solution set. Write the answer in interval notation. (See Examples 7-8.)

43.
$$0 \le 2b - 5 < 9$$

44.
$$-6 < 3k - 9 \le 0$$

45.
$$-1 < \frac{a}{6} \le 1$$

46.
$$-3 \le \frac{1}{2}x < 0$$

47.
$$-\frac{2}{3} < \frac{y-4}{-6} < \frac{1}{3}$$

48.
$$\frac{1}{3} > \frac{t-4}{-3} > -2$$

49.
$$5 \le -3x - 2 \le 8$$

50.
$$-1 < -2x + 4 \le 5$$

51.
$$12 > 6x + 3 \ge 0$$

52.
$$-4 \ge 2x - 5 > -7$$

53.
$$-0.2 < 2.6 + 7t < 4$$

54.
$$-1.5 < 0.1x \le 8.1$$

Concept 4: Solving Compound Inequalities: Or

For Exercises 55-64, solve the inequality and graph the solution set. Write the answer in interval notation. (See Examples 9-10.)

55.
$$2y - 1 \ge 3$$
 or $y < -2$

56.
$$x < 0$$
 or $3x + 1 \ge 7$

57.
$$1 > 6z - 8$$
 or $8z - 6 \le 10$

58.
$$22 > 4t - 10$$
 or $7 > 2t - 5$

• 59.
$$5(x-1) \ge -5$$
 or $5-x \le 11$

60).
$$-p + 7 \ge 10$$
 or $3(p - 1) \le 12$

61.
$$\frac{5}{3}v \le 5$$
 or $-v - 6 < 1$

62.
$$\frac{3}{8}u + 1 > 0$$
 or $-2u \ge -4$

63.
$$0.5w + 5 < 2.5w - 4$$
 or $0.3w \le -0.1w - 1.6$ **64.** $1.25a + 3 \le 0.5a - 6$ or $2.5a - 1 \ge 9 - 1.5a$

64.
$$1.25a + 3 \le 0.5a - 6$$
 or $2.5a - 1 \ge 9 - 1.5a$

Mixed Exercises

For Exercises 65-74, solve the inequality. Write the answer in interval notation.

65. a.
$$3x - 5 < 19$$
 and $-2x + 3 < 23$

66. a.
$$0.5(6x + 8) > 0.8x - 7$$
 and $4(x + 1) < 7.2$

b.
$$3x - 5 < 19$$
 or $-2x + 3 < 23$

b.
$$0.5(6x + 8) > 0.8x - 7$$
 or $4(x + 1) < 7.2$

67. a.
$$8x - 4 \ge 6.4$$
 or $0.3(x + 6) \le -0.6$

68. a.
$$-2r + 4 \le -8$$
 or $3r + 5 \le 8$

b.
$$8x - 4 \ge 6.4$$
 and $0.3(x + 6) \le -0.6$

b.
$$-2r + 4 \le -8$$
 and $3r + 5 \le 8$

69.
$$-4 \le \frac{2-4x}{3} < 8$$

70.
$$-1 < \frac{3-x}{2} \le 0$$